图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
多孔介质期刊
影响因子: 1.49 5年影响因子: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN 打印: 1091-028X
ISSN 在线: 1934-0508

多孔介质期刊

DOI: 10.1615/JPorMedia.v9.i5.10
pages 393-402

Thermally Developing Forced Convection in a Bidisperse Porous Medium

Andrey V Kuznetsov
Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910, USA
D A Nield
University of Auckland Auckland, New Zealand

ABSTRACT

The classical Graetz methodology is applied to investigate the thermal development of forced convection in a parallel-plate channel filled by a saturated bidispersed porous medium, with walls held at constant temperature. A two-velocity two-temperature model is employed for the porous medium. The analysis leads to an expression for the local Nusselt number as a function of the dimensionless longitudinal coordinate and parameters characterizing the porous medium (macropore volume fraction, interphase heat transfer parameter, thermal conductivity ratio, and effective permeability ratio).


Articles with similar content:

LATTICE BOLTZMANN SIMULATION OF HEAT TRANSFER ENHANCEMENT IN AN ASYMMETRICALLY HEATED CHANNEL FILLED WITH RANDOM POROUS MEDIA
Journal of Porous Media, Vol.20, 2017, issue 2
Abbas Abbassi, Alireza Salehi, Mohammad Abbaszadeh
Criterion for Local Thermal Equilibrium in Forced Convection Flow Through Porous Media
Journal of Porous Media, Vol.12, 2009, issue 11
Zhichun Liu, Xuewei Zhang, Wei Liu
EFFECTS OF MICRO- AND MACRO-SCALE VISCOUS DISSIPATIONS WITH HEAT GENERATION AND LOCAL THERMAL NON-EQUILIBRIUM ON THERMAL DEVELOPING FORCED CONVECTION IN SATURATED POROUS MEDIA
Journal of Porous Media, Vol.18, 2015, issue 9
M. Y. Abdollahzadeh Jamalabadi
LATTICE BOLTZMANN METHOD FOR MODELLING HEAT AND MASS TRANSFERS DURING DRYING OF DEFORMABLE POROUS MEDIUM
Journal of Porous Media, Vol.16, 2013, issue 9
Hussein El Abrach, Hacen Dhahri, Abdallah Mhimid
HEAT TRANSFER ENHANCEMENT IN AN ASYMMETRICALLY HEATED CHANNEL PARTIALLY FILLED WITH FIBROUS POROUS MEDIA−A LBM APPROACH
Journal of Porous Media, Vol.18, 2015, issue 12
Abbas Abbassi, Alireza Salehi, Mohammad Abbaszadeh