图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
多孔介质期刊
影响因子: 1.061 5年影响因子: 1.151 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN 打印: 1091-028X
ISSN 在线: 1934-0508

多孔介质期刊

DOI: 10.1615/JPorMedia.v13.i11.20
pages 961-971

THE PERFORMANCE OF POLYMER FLOODS IN PARTIALLY FRACTURED RESERVOIRS

Abdullah F. Alajmi
Petroleum Engineering Department, College of Engineering & Petroleum, Kuwait University
Ridha B. Gharbi
Department of Petroleum Engineering, College of Engineering & Petroleum, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
Robert Chase
Department of Petroleum Engineering, Marietta College, Marietta, OH 45750

ABSTRACT

With the growing demand for oil and the prospect of higher prices, the application of enhanced oil recovery (EOR) processes is becoming an important strategy for many oil-producing companies around the world, including in the Middle East region. In this region, there are a large number of oil and gas reservoirs that are naturally fractured. In fact, most hydrocarbon reservoirs are fractured to some degree. Among EOR processes, polymer flooding represents an attractive option that could be applied in many of these reservoirs. Therefore understanding what parameters affect polymer flooding in naturally fractured reservoirs and their impact on performance prediction is critical in the decision on the applicability of this recovery technique. Using fine-mesh numerical reservoir simulations, this study investigated the performance of polymer floods in fully to slightly fractured reservoirs. A random distribution of fractures was assumed to simulate the irregularity of typical fracture networks. A dual-porosity, dual-permeability model was used to simulate the displacement phenomena. Extensive simulation runs were performed to determine the functional relationship between recovery performance and various design parameters during polymer flooding. These parameters included (1) fracture intensity; (2) well configurations; (3) polymer slug size; and (4) polymer concentration. Results show that these parameters have significant effects on the efficiency of a polymer flood. A critical value of fracture intensity appears to delineate favorable from unfavorable performance in polymer floods. The ranges for the values of parameters under which polymer floods may yield better performance are presented.


Articles with similar content:

THE SIMULATION OF VISCOUS FINGERING BY USING A DIFFUSION-LIMITED-AGGREGATION MODEL DURING CO2 FLOODING
Journal of Porous Media, Vol.21, 2018, issue 6
Yaoge Liu, Peichao Li, Detang Lu, Zhiwei Lu, Wei Tian
TYPE CURVES FOR PRODUCTION ANALYSIS OF NATURALLY FRACTURED SHALE GAS RESERVOIRS WITH STRESS-SENSITIVE EFFECT
Special Topics & Reviews in Porous Media: An International Journal, Vol.5, 2014, issue 2
Shijun Huang, Linsong Cheng, Shuang Ai, Bailu Teng, Hongjun Liu, Zheng Jia
STUDY ON FLUID FLOW IN SANSTONE RESERVOIRS WITH MULTI-LEVEL FLOW MEDIUM
First Thermal and Fluids Engineering Summer Conference, Vol.19, 2015, issue
Yuetian Liu, YanFeng Liu, Wenkuan Zheng
A DYNAMIC DISCRETE FRACTURE APPROACH FOR MODELING MULTIPHASE FLOW AND TRANSPORT IN FRACTURED POROUS MEDIA
Journal of Porous Media, Vol.18, 2015, issue 11
Huiying Tang, Zhengdong Lei, Changbing Tian, Yuzhang Liu, Xiaofei Zhang, Tingting Wang
WETTABILITY EFFECTS IN GAS GRAVITY—ASSISTED FLOW AS RELATED TO DISPLACEMENT INSTABILITY
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 1
Behzad Rostami, V. Alipour Tabrizy, Riyaz Kharrat, C. Ghotbi, M. Khosravi