图书馆订阅: Guest
生物医学工程评论综述™

每年出版 6 

ISSN 打印: 0278-940X

ISSN 在线: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

The Technology and Performance of 4D Ultrasound

卷 36, 册 4, 2008, pp. 267-314
DOI: 10.1615/CritRevBiomedEng.v36.i4.20
Get accessGet access

摘要

Recent developments in 4D ultrasound imaging technology allow clinicians to obtain not only rich visual information but also quantitative data that can be used for diagnosis and treatment. Some argue that the extension of 2D ultrasound is unnecessary and does not offer any benefits to diagnosis, while others argue that it is possible to better assess an abnormality in 3D than 2D. Anatomy can be reconstructed in perspectives that were never seen with conventional 2D US imaging. Advanced rendering techniques in three dimensions can be customized to be sensitive to specific pathology, thus making diagnosis more accurate. Volume and function of certain anatomical components can be measured with greater accuracy.
This article reviews physical principles behind the ultrasound technology, how they are applied to advance the field of ultrasound imaging, and maybe reach its limits. Advances in ultrasound technology make 4D ultrasound imaging faster and less dependent on the operator's expertise, thus opening up more research possibilities in the fields of data processing and visualization.
Currently, 4D ultrasound is extensively used in the field of obstetrics and interven-tional radiology. The goal of 4D ultrasound is to overcome the limitations posed by its predecessor technology and to be more clinically useful as an imaging tool.

对本文的引用
  1. Grace Mary Kanaga E., Anitha J., Sujitha Juliet D., 4D medical image analysis, in Advanced Machine Vision Paradigms for Medical Image Analysis, 2021. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain