图书馆订阅: Guest
生物医学工程评论综述™

每年出版 6 

ISSN 打印: 0278-940X

ISSN 在线: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Bioelectrical Impedance Techniques in Medicine
Part III: Impedance Imaging
First Section: General Concepts and Hardware

卷 24, 册 4-6, 1996, pp. 467-597
DOI: 10.1615/CritRevBiomedEng.v24.i4-6.40
Get accessGet access

摘要

Measurement accuracy is a key point in impedance imaging and is mainly limited by factors that take place in the acquisition system. This part is a review of hardware solutions developed in acquisition systems for electrical impedance tomography (EIT). The general principles of EIT along with the changes that have taken place in the last decade, in terms of measurement strategy, and a certain number of definitions are introduced. The major hardware error sources that occur in the front end of EIT systems are presented. A review of the various alternatives published in the literature that are used to drive current, including current and voltage approaches, and the main solutions recommended in the literature to overcome the key point drawbacks of voltage measurement systems, including voltage buffers, instrumentation amplifiers, and demodulators, are provided. Some calibration procedures and approaches for the evaluation of the performance of EIT systems are also presented.

对本文的引用
  1. Eyüboglu B Murat, Köksal Adnan, Demirbilek Mehmet, Distinguishability analysis of an induced current EIT system using discrete coils, Physics in Medicine and Biology, 45, 7, 2000. Crossref

  2. Chen Ying, Yu Miao, Bruck Hugh A, Smela Elisabeth, Compliant multi-layer tactile sensing for enhanced identification of human touch, Smart Materials and Structures, 27, 12, 2018. Crossref

  3. Zlochiver Sharon, Radai M Michal, Abboud Shimon, Rosenfeld Moshe, Dong Xiu-Zhen, Liu Rui-Gang, You Fu-Sheng, Xiang Hai-Yan, Shi Xue-Tao, Induced current electrical impedance tomography system: experimental results and numerical simulations, Physiological Measurement, 25, 1, 2004. Crossref

  4. Zhang Chao, Dai Meng, Liu Wei, Bai Xiaohui, Wu Jiaming, Xu Canhua, Xia Junying, Fu Feng, Shi Xuetao, Dong Xiuzhen, Jin Faguang, You Fusheng, Di Y. Peter, Global and regional degree of obstruction determined by electrical impedance tomography in patients with obstructive ventilatory defect, PLOS ONE, 13, 12, 2018. Crossref

  5. Birg l  zlem, Ey boglu B Murat, Ider Y Ziya, Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns, Physics in Medicine and Biology, 48, 5, 2003. Crossref

  6. Özdemir Mahir S, Eyübo lu B Murat, Özbek Orçun, Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization, Physics in Medicine and Biology, 49, 20, 2004. Crossref

  7. Yasin Mamatjan, Böhm Stephan, Gaggero Pascal O, Adler Andy, Evaluation of EIT system performance, Physiological Measurement, 32, 7, 2011. Crossref

  8. Vogt Barbara, Pulletz Sven, Elke Gunnar, Zhao Zhanqi, Zabel Peter, Weiler Norbert, Frerichs Inéz, Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing, Journal of Applied Physiology, 113, 7, 2012. Crossref

  9. Radai Michal M., Arad Marina, Zlochiver Sharon, Krief Haim, Engelman Tzvika, Abboud Shimon, A Novel Telemedicine System for Monitoring Congestive Heart Failure Patients, Congestive Heart Failure, 14, 5, 2008. Crossref

  10. Davalos Rafael , Rubinsky Boris , Electrical Impedance Tomography of Cell Viability in Tissue With Application to Cryosurgery , Journal of Biomechanical Engineering, 126, 2, 2004. Crossref

  11. Hahn G., Just A., Hellige G., Determination of the dynamic measurement error of EIT systems, in 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, 17, 2007. Crossref

  12. Johnson Lee, Scribner Dean, Skeath Perry, Klein Richard, Ilg Doug, Perkins Keith, Helfgott Maxwell, Sanders Reginald, Panigrahi Dipak, Impedance-based retinal contact imaging as an aid for the placement of high resolution epiretinal prostheses, Journal of Neural Engineering, 4, 1, 2007. Crossref

  13. Schneider I. D., Kleffel R., Jennings D., Courtenay A. J., Design of an electrical impedance tomography phantom using active elements, Medical & Biological Engineering & Computing, 38, 4, 2000. Crossref

  14. Bertemes-Filho Pedro, Electrical Impedance Spectroscopy, in Bioimpedance in Biomedical Applications and Research, 2018. Crossref

  15. Altunel Haluk, Eyüboğlu B. M., Köksal A., Distinguishability for Magnetic Resonance-Electric Impedance Tomography (MR-EIT), in World Congress on Medical Physics and Biomedical Engineering 2006, 14, 2007. Crossref

  16. Jennings D., Schneider I. D., Front-end architecture for a multifrequency electrical impedance tomography system, Medical & Biological Engineering & Computing, 39, 3, 2001. Crossref

  17. Oschman James L., Electricity and Magnetism in Diagnosis and Therapeutics, in Energy Medicine, 2016. Crossref

  18. González-Correa Carlos-Augusto, Clinical Applications of Electrical Impedance Spectroscopy, in Bioimpedance in Biomedical Applications and Research, 2018. Crossref

  19. Xu Yuan, He Bin, Magnetoacoustic tomography with magnetic induction (MAT-MI), Physics in Medicine and Biology, 50, 21, 2005. Crossref

  20. Abboud Shimon, Radai Michal M., Zlochiver Sharon, Electrical Impedance Technique for Cryosurgery Monitoring, in Wiley Encyclopedia of Biomedical Engineering, 2006. Crossref

  21. REIFFERSCHEID FLORIAN, ELKE GUNNAR, PULLETZ SVEN, GAWELCZYK BARBARA, LAUTENSCHLÄGER INGMAR, STEINFATH MARKUS, WEILER NORBERT, FRERICHS INÉZ, Regional ventilation distribution determined by electrical impedance tomography: Reproducibility and effects of posture and chest plane, Respirology, 16, 3, 2011. Crossref

  22. Gagnon Herve, Cousineau Martin, Adler Andy, Hartinger Alzbeta E., A Resistive Mesh Phantom for Assessing the Performance of EIT Systems, IEEE Transactions on Biomedical Engineering, 57, 9, 2010. Crossref

  23. Hinz J., Hahn G., Quintel M., Elektrische Impedanztomographie, Der Anaesthesist, 57, 1, 2008. Crossref

  24. Hahn G, Just A, Dittmar J, Hellige G, Systematic errors of EIT systems determined by easily-scalable resistive phantoms, Physiological Measurement, 29, 6, 2008. Crossref

  25. Oziel M., Hjouj M., Gonzalez C. A., Lavee J., Rubinsky B., Non-ionizing radiofrequency electromagnetic waves traversing the head can be used to detect cerebrovascular autoregulation responses, Scientific Reports, 6, 1, 2016. Crossref

  26. Frangi A.R., Riu P.J., Rosell J., Viergever M.A., Propagation of measurement noise through backprojection reconstruction in electrical impedance tomography, IEEE Transactions on Medical Imaging, 21, 6, 2002. Crossref

  27. Levy S., Adam D., Bresler Y., Electromagnetic impedance tomography (EMIT): a new method for impedance imaging, IEEE Transactions on Medical Imaging, 21, 6, 2002. Crossref

  28. Koksal A., Eyuboglu M., Demirbilek M., A quasi-static analysis for a class of induced-current EIT systems using discrete coils, IEEE Transactions on Medical Imaging, 21, 6, 2002. Crossref

  29. Davalos R.V., Rubinsky B., Otten D.M., A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine, IEEE Transactions on Biomedical Engineering, 49, 4, 2002. Crossref

  30. Davalos R.V., Otten D.M., Mir L.M., Rubinsky B., Electrical Impedance Tomography for Imaging Tissue Electroporation, IEEE Transactions on Biomedical Engineering, 51, 5, 2004. Crossref

  31. Zlochiver S., Rosenfeld M., Abboud S., Induced-current electrical impedance tomography: a 2-d theoretical simulation, IEEE Transactions on Medical Imaging, 22, 12, 2003. Crossref

  32. Hartov A., Mazzarese R.A., Reiss F.R., Kerner T.E., Osterman K.S., Williams D.B., Paulsen K.D., A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system, IEEE Transactions on Biomedical Engineering, 47, 1, 2000. Crossref

  33. Nadi M., Chateaux J., Comparison of performances of electrical impedance tomography evaluated with 2-D and 3-D models, IEEE Transactions on Microwave Theory and Techniques, 48, 11, 2000. Crossref

  34. Wu Yan, Guo Qianyu, Lu Wangzilu, Huang Jiajie, Ying Liang, Chen Mingyi, Li Yongfu, A Thorax-Like Mesh Phantom for Testing Electrical Impedance Tomography System Performance, 2021 19th IEEE International New Circuits and Systems Conference (NEWCAS), 2021. Crossref

  35. Vaquero-Gallardo Noelia, Martínez-García Herminio, Electrical Impedance Tomography for Hand Gesture Recognition for HMI Interaction Applications, Journal of Low Power Electronics and Applications, 12, 3, 2022. Crossref

  36. Lu Wangzilu, Guo Qianyu, Huang Jiajie, Wu Yan, Wang Chao, Zhao Jian, Li Yongfu, Design Automation of a Dynamic Thorax-Like Mesh Phantom for Evaluating the Performance of Electrical Impedance Tomography System, IEEE Open Journal of Instrumentation and Measurement, 1, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain