图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
生物医学工程评论综述™
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN 打印: 0278-940X
ISSN 在线: 1943-619X

生物医学工程评论综述™

DOI: 10.1615/CritRevBiomedEng.v38.i5.10
pages 393-433

A New Perspective for Stem-Cell Mechanobiology: Biomechanical Control of Stem-Cell Behavior and Fate

Igor A. Titushkin
Bioengineering Department, University of Illinois, Chicago, USA
Jennifer Shin
Departments of Mechanical Engineering and of Brain and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
Michael Cho
Department of Bioengineering, University of Illinois, Chicago, IL, USA

ABSTRACT

Biomechanics is known to play an important role in cell metabolism. Cell phenotype, tissue-specific functions, and fate critically depend on the extracellular mechanical environment. The mechanical properties of the cell itself, such as cytoskeleton elasticity, membrane tension, and adhesion strength, may also play an important role in cell homeostasis and differentiation. Pluripotent bone marrow-derived human mesenchymal stem cells, for example, can be differentiated into many tissue-specific lineages. While cellular biomechanical properties are significantly altered during stem-cell specification to a particular phenotype, the complexity of events associated with transformation of these precursor cells leaves many questions unanswered about morphological, structural, proteomic, and functional changes in differentiating stem cells. A thorough understanding of stem-cell behavior would allow the development of more effective approaches to the expansion of stem cells in vitro and the regulation of their commitment to a specific phenotype. Control of cell behaviors might be feasible through manipulation of the cellular biomechanical properties using various external physical stimuli, including electric fields, mechanical stimuli, and genetic manipulation of the expression of particular genes. Biomechanical regulation of stem-cell differentiation can greatly minimize the number of chemicals and growth factors that would otherwise be required for composite tissue engineering. Determination and the appropriate use of the known physicochemical cues will facilitate current research effort toward designing and engineering functional tissue constructs.


Articles with similar content:

Heparan Sulfate Control of Proliferation and Differentiation in the Stem Cell Niche
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 2
Victor Nurcombe, Simon M. Cool
Targeted Gene Delivery: A Two-Pronged Approach
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.17, 2000, issue 4
Austin Bailey, Sean M. Sullivan, Khursheed Anwer
Tissue Engineering of Cardiac Valves on the Basis of PGA/PLA Co-Polymers
Journal of Long-Term Effects of Medical Implants, Vol.11, 2001, issue 3&4
Ulrich A. Stock, John E. Mayer, Jr.
MicroRNAs: Cobblestones on the Road to Cancer Metastasis
Critical Reviews™ in Oncogenesis, Vol.18, 2013, issue 4
Valentina Profumo, Paolo Gandellini
Osteoblast Precursors at Different Anatomic Sites
Critical Reviews™ in Eukaryotic Gene Expression, Vol.13, 2003, issue 2-4
Tilmann Wurtz, Ariane Berdal