图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
生物医学工程评论综述™
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN 打印: 0278-940X
ISSN 在线: 1943-619X

生物医学工程评论综述™

DOI: 10.1615/CritRevBiomedEng.v39.i4.50
pages 319-336

Computational Modeling of Airway and Pulmonary Vascular Structure and Function: Development of a "Lung Physiome"

Merryn Tawhai
University of Auckland
A. R. Clark
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
G. M. Donovan
Department of Mathematics, The University of Auckland, Auckland, New Zealand
K. S. Burrowes
Oxford University Computing Laboratory, University of Oxford, Oxford, United Kingdom

ABSTRACT

Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction.


Articles with similar content:

FLOW IN NATURAL AND DYNAMIC AIRWAY GEOMETRIES
TSFP DIGITAL LIBRARY ONLINE, Vol.7, 2011, issue
Octavian Frederich, Eike Hylla, Frank Thiele
Emergent Structure-Function Relations in Emphysema and Asthma
Critical Reviews™ in Biomedical Engineering, Vol.39, 2011, issue 4
Bela Suki, Tilo Winkler
A Multiphysics Model of Myoma Growth
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 1
Gabor Szekely, Bryn Lloyd, Michael Bajka, Dominik Szczerba
Structural and Functional Properties of the Actin Gene Family
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 3
Tina M. Bunnell , James M. Ervasti
INTERACTIONS BETWEEN MULTIPLE ENRICHMENTS IN EXTENDED FINITE ELEMENT ANALYSIS OF SHORT FIBER REINFORCED COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 6
Mason A. Hickman, Matthew G. Pike, Caglar Oskay