图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
生物医学工程评论综述™
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN 打印: 0278-940X
ISSN 在线: 1943-619X

生物医学工程评论综述™

DOI: 10.1615/CritRevBiomedEng.2016016141
pages 347-369

Stealth Engineering for In Vivo Drug Delivery Systems

Ankita Mohapatra
Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN 38152
Bashir I. Morshed
Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN 38152
Warren O. Haggard
Chair Excellence Associate Dean, Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152
Richard A. Smith
Department of Orthopedic Surgery & Biomedical Engineering, University of Tennessee Campbell Clinic, Memphis, TN 38163

ABSTRACT

In generic terms, a drug delivery substrate (DDS) can be described as a vehicle to transport drug to the point of interest. A DDS that would ideally have the capability to control drug dosage and achieve target specificity, localization, and higher therapeutic efficacy has been pursued as a holy grail in pharmaceutical research. Over the years, diverse classes, structures, and modifications of DDS have been proposed to achieve this aim. One of its major deterrents, however, is rapid elimination of drug by the immune system before intended functionality. Stealth engineering is broadly defined as a method of designing a drug carrier to minimize or delay opsonization until the encapsulated drug is delivered to the intended target. Stealth-engineered DDS has been successful in extending drug circulation lifetime from a few minutes to several days. Currently, this field of research has made much progress since its initiation in 1960s with liposomes to DNA boxes. Activity has also benefited several areas of medicine, where it has been applied in cancer, gene therapy, bone regrowth, and infection treatment. This review covers the progress of some types of DDS that have been published and indexed in major databases (including ScienceDirect, PubMed, and Google Scholar) in the scientific literature.