图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
生物医学工程评论综述™
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN 打印: 0278-940X
ISSN 在线: 1943-619X

生物医学工程评论综述™

DOI: 10.1615/CritRevBiomedEng.2020033151
pages 29-62

Nanopore Fabrication and Application as Biosensors in Neurodegenerative Diseases

Brian Lenhart
Department of Chemical Engineering, University of South Carolina, Columbia, SC
Xiaojun Wei
Department of Chemical Engineering, University of South Carolina, Columbia, SC; Biomedical Engineering Program, University of South Carolina, Columbia, SC
Zehui Zhang
Biomedical Engineering Program, University of South Carolina, Columbia, SC
Xiaoqin Wang
Department of Chemical Engineering, University of South Carolina, Columbia, SC
Qian Wang
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC
Chang Liu
Department of Chemical Engineering, University of South Carolina, Columbia, SC; Biomedical Engineering Program, University of South Carolina, Columbia, SC

ABSTRACT

Since its conception as an applied biomedical technology nearly 30 years ago, nanopore is emerging as a promising, high-throughput, biomarker-targeted diagnostic tool for clinicians. The attraction of a nanopore-based detection system is its simple, inexpensive, robust, user-friendly, high-throughput blueprint with minimal sample preparation needed prior to analysis. The goal of clinical-based nanopore biosensing is to go from sample acquisition to a meaningful readout quickly. The most extensive work in nanopore applications has been targeted at DNA, RNA, and peptide identification. Although, biosensing of pathological biomarkers, which is covered in this review, is on the rise. This review is broken into two major sections: (i) the current state of existing biological, solid state, and hybrid nanopore systems and (ii) the applications of nanopore biosensors toward detecting neurodegenerative biomarkers.

REFERENCES

  1. Haque F, Li J, Wu HC, Liang XJ, Guo P. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today. 2013; 8(1):56-74. .

  2. Ying YL, Cao C, Long YT. Single molecule analysis by biological nanopore sensors. Analyst. 2014;139(16):3826-35. .

  3. Gouaux JE, Braha O, Hobaugh MR, Song L, Cheley S, Shustak C, Bayley H. Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: A heptameric transmembrane pore. Proc Natl Acad Sci U S A. 2006;91(26):12828-31. .

  4. Vesper SJ, Magnuson ML, Dearborn DG, Yike I, Haugland RA. Initial characterization of the hemolysin stachylysin from Stachybotrys chartarum. Infect Immun. 2001;69(2):912-6. .

  5. Aksimentiev A, Schulten K. Imaging a-hemolysin with molecular dynamics: Ionic conductance, osmotic perme-ability, and the electrostatic potential map. Biophys J. 2005;88:3745-61. .

  6. Storm AJ, Zandbergen H, Chen J, Joanny J-F, Storm C, Dekker C. Fast DNA translocation through a solid-state nanopore. Nano Lett. 2005;5(7):1193-7. .

  7. Henley R, Rosenstein JK, Wanunu M, Larkin J, Cohen-Karni T, Bell DC. Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano. 2013;7(11):10121-8. .

  8. Tang Z, Zhang D, Cui W, Zhang H, Pang W, Duan X. Fabrications, applications and challenges of solid-state nanopores: A mini review. Nanomater Nanotechnol [In-ternet]. 2016;6(35):1-12. Available from: http://journals. sagepub.com/doi/10.5772/64015. .

  9. Hall AR, Scott A, Rotem D, Mehta KK, Bayley H, Dekker C. Hybrid pore formation by directed insertion of a-haemolysin into solid-state nanopores. Nat Nanotechnol [In-ternet]. 2010;5(12):874-7. Available from: http://dx.doi. org/10.1038/nnano.2010.237. .

  10. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17(1):1-11. .

  11. Howorka S, Cheley S, Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol. 2001;19(7):636-9. .

  12. Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S, Mc-Neill L, Wallace EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Heron AJ, Turner D. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018;15(3):201-6. .

  13. Wilson J, Sloman L, He Z, Aksimentiev A. Graphene nanopores for protein sequencing. Adv Funct Mater. 2016;26(27):4830-8. .

  14. Huang G, Willems K, Soskine M, Wloka C, Maglia G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat Commun. 2017;8(1):1-11. .

  15. Wang HY, Ying YL, Li Y, Kraatz HB, Long YT. Nanopore analysis of P-amyloid peptide aggregation transition induced by small molecules. Anal Chem. 2011;83(5):1746-52. .

  16. Steven T. DeKosky, Kenneth Marek. Looking backward to move forward: Early detection of neurodegenerative disorders. Brain Dis [Internet]. 2003;44(195): 1053-982. Available from: http://www.scual.sld.cu/documentos_pdf/Biomarkers-De Kosky Dic 2003.pdf. .

  17. Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W. Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther [Internet]. 2016;17(3):246-53. Available from: http://dx.doi.org/10.1080/15384047.2016.1139236. .

  18. Gaugler J, James B, Johnson T, Scholz K, Weuve J. 2016 Alzheimer's disease facts and figures. Alzheimer's Dement. 2016;12(4):459-509. .

  19. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Dore V, Fowler C, Li QX, Martins R, Rowe C, Tomita T, Matsuzaki K, Ishii K, Arahata Y, Iwamoto S, Ito K, Tanaka K, Masters CL. Yanagisawa K. High performance plasma amyloid-p biomarkers for Alzheimer's disease. Nature. 2018;554(7691):249-54. .

  20. Noskov SY, Im W, Roux B. Ion permeation through the a-hemolysin channel: Theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. Biophys J. 2004;87(4):2299-309. .

  21. Gouaux JE, Song L, Cheley S, Bayley H, Hobaugh MR, Shustak C. Structure of Staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996; 274(5294):1859-65. .

  22. Wiseman GM. The hemolysins of staphylococcus aureus. Bacteriol Rev [Internet]. 1975;39(4):317-44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1108866%0A; http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=PMC408339. .

  23. Cosentino K, Ros U, Garcia-Saez A J. Assembling the puzzle: Oligomerization of a-pore forming proteins in membranes. Biochim Biophys Acta - Biomembr. 2016;1858(3):457-66. .

  24. Yilmaz N, Kobayashi T. Assemblies of pore-forming toxins visualized by atomic force microscopy. Biochim Bio-phys Acta-Biomembr. 2016;1858(3):500-11. .

  25. Rachakonda V, Pan TH, Le WD. Biomarkers of neurode-generative disorders: How good are they? Cell Res [Internet]. 2004;14(5):347-58. Available from: http://www. embase.com/search/results?subaction=viewrecord&-from=export&id=L39703823. .

  26. Misakian M, Kasianowicz JJ. Electrostatic influence on ion transport through the aHL channel. J Membr Biol. 2003;195(3):137-46. .

  27. Gibrat G, Pastoriza-Gallego M, Thiebot B, Breton MF, Auvray L, Pelta J. Polyelectrolyte entry and transport through an asymmetric a-hemolysin channel. J Phys Chem B. 2008;112(47):14687-91. .

  28. Wang S, Haque F, Rychahou PG, Evers MB, Guo P. Engineered nanopore of Phi29 DNA-packaging motor for real-time detection of single colon cancer specific antibody in serum. ACS Nano. 2013;7(11):9814-22. .

  29. Lunn J, Smithrud D, Guo P, Fang H, Haque F. Real-time sensing and discrimination of single chemicals using the channel of Phi29 DNA packaging nanomotor. ACS Nano. 2012;6(4):3251-61. .

  30. Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH. Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A. 2010;107(37):16060-5. .

  31. Mahfoud M, Sukumaran S, Hulsmann P, Grieger K, Niederweis M. Topology of the porin MspA in the outer membrane of Mycobacterium smegmatis. J Biol Chem. 2006;281(9):5908-15. .

  32. Howard P, Lee JS, Stefureac R, Kraatz H-B, Long Y. Transport of a-helical peptides through a-hemolysin and aerolysin pores. Biochemistry. 2006;45(30):9172-9. .

  33. Podobnik M, Kisovec M, Anderluh G. Molecular mechanism of pore formation by aerolysin-like proteins. Philos Trans R Soc Lond B Biol Sci. 2017;372(1726):1-6. .

  34. Cao C, Ying YL, Hu ZL, Liao DF, Tian H, Long YT. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat Nanotechnol [Internet]. 2016;11(8):713-8. Available from: http://dx.doi. org/10.1038/nnano.2016.66. .

  35. Wang Y, Gu LQ, Tian K. The aerolysin nanopore: From peptidomic to genomic applications. Nanoscale. 2018;10(29):13857-66. .

  36. Cao C, Long YT. Biological nanopores: Confined spaces for electrochemical single-molecule analysis. Acc Chem Res. 2018;51(2):331-41. .

  37. Yang J, Wang YQ, Li MY, Ying YL, Long YT. Direct sensing of single native RNA with a single-biomolecule interface of aerolysin nanopore. Langmuir. 2018;34(49):14940-5. .

  38. Soskine M, Moeyaert B, Cheley S, Bayley H, Biesemans A, Maglia G. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 2012;12(9):4895-900. .

  39. Nomidis SK, Hooyberghs J, Maglia G, Carlon E. DNA capture into the ClyA nanopore: Diffusion-limited versus reaction-limited processes. J Phys Condens Matter. 2018;30(30):1-6. .

  40. Soskine M, Biesemans A, De Maeyer M, Maglia G. Tuning the size and properties of ClyA nanopores assisted by directed evolution. J Am Chem Soc. 2013;135(36):13456-63. .

  41. Niedzwiecki DJ, Mohammad MM, Movileanu L. Inspection of the engineered FhuA Ac/A4L protein nanopore by polymer exclusion. Biophys J. 2012;103(10):2115-24. .

  42. Mohammad MM, Borer PN, McPike MP, Iyer R, Howard KR, Movileanu L. Engineering a rigid protein tunnel for biomolecular detection. J Am Chem Soc. 2012;134(22):9521-31. .

  43. Wang HY, Li Y, Qin LX, Heyman A, Shoseyov O, Willner I, Long YT, Tian H. Single-molecule DNA detection using a novel SP1 protein nanopore. Chem Commun. 2013;49(17):1741-3. .

  44. Qin LX, Li Y, Li DW, Jing C, Chen BQ, Ma W, Heyman A, Shoseyov O, Willner I, Tian H, Long YT. Electrode-position of single-metal nanoparticles on stable protein 1 membranes: Application of plasmonic sensing by single nanoparticles. Angew Chemie-Int Ed. 2012;51(1):140-4. .

  45. Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun. 2019;10(1):1-10. .

  46. Wloka C, Mutter NL, Soskine M, Maglia G. Alpha-helical Fragaceatoxin C nanopore engineered for double-stranded and single-stranded nucleic acid analysis. Angew Chemie Int Ed Engl. 2016;55(40):12494-8. .

  47. Chen M, Khalid S, Sansom MSP, Bayley H. Outer membrane protein G: Engineering a quiet pore for biosensing. Proc Natl Acad Sci U S A. 2008;105(17):6272-7 .

  48. Sanganna Gari RR, Seelheim P, Liang B, Tamm LK. Quiet outer membrane protein G (OmpG) nanopore for biosensing. ACS Sensors. 2019;4:1230-5. .

  49. Fahie MA, Chen M. Electrostatic interactions between OmpG nanopore and analyte protein surface can distinguish between glycosylated isoforms. J Phys Chem B. 2015;119(32):10198-206. .

  50. Wolfe AJ, Hsueh YC, Blanden AR, Mohammad MM, Pham B, Thakur AK, Loh SN, Chen M, Movileanu L. Interrogating detergent desolvation of nanopore-forming proteins by fluorescence polarization spectroscopy. Anal Chem. 2017;89(15):8013-20. .

  51. Yildiz O, Vinothkumar KR, Goswami P, Kuhlbrandt W. Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation. EMBO J. 2006;25(15):3702-13. .

  52. Bokori-Brown M, Martin TG, Naylor CE, Basak AK, Titball RW, Savva CG. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein. Nat Commun. 2016;7:1-7. .

  53. De Colibus L, Sonnen AFP, Morris KJ, Siebert CA, Abrusci P, Plitzko J, Hodnik V, Leippe M, Volpi E, Anderluh G, Gilbert RJC. Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure. 2012;20(9):1498-507. .

  54. Shrestha N, Bryant SL, Thomas C, Richtsmeier D, Pu X, Tinker J, Fologea D. Stochastic sensing of Angiotensin II with lysenin channels. Sci Rep. 2017;7(1):1-11. .

  55. Munguira ILB, Takahashi H, Casuso I, Scheming S. Lysenin toxin membrane insertion is pH-dependent but independent of neighboring lysenins. Biophys J. 2017;113(9):2029-36. .

  56. Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van Den Broeck I, Troupiotis-Tsailaki A, Jockheere W, Pehau-Arnaudet G, Pinkner JS, Chapman MR, Hultgren SJ, Howorka S, Fronzes R, Remaut H. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature. 2014;516(7530):250-3. .

  57. Lu H, Giordano F, Ning Z. Oxford nanopore MinION sequencing and genome assembly. Genom Proteom Bioinf. 2016;14(5):265-79. .

  58. Assad ON, Gilboa T, Spitzberg J, Juhasz M, Weinhold E, Meller A. Light-enhancing plasmonic-nanopore biosensor for superior single-molecule detection. Adv Mater. 2017;29(9):1-9. .

  59. Budzik JM, Hosseini M, Mackinnon AC, Taxy JB. Disseminated Nocardia farcinica: Literature review and fatal outcome in an immunocompetent patient. Surg Infect (Larchmt). 2012;13(3):163-70. .

  60. Schmidt J. Membrane platforms for biological nanopore sensing and sequencing. Curr Opin Biotechnol. 2016; 39:17-27. .

  61. Singh PR, Barcena-Uribarri I, Modi N, Kleinekathofer U, Benz R, Winterhalter M, Mahendran K. Pulling peptides across nanochannels: Resolving peptide binding and translocation through the hetero-oligomeric channel from nocardia farcinica. ACS Nano. 2012;6(12):10699-707. .

  62. Collier RJ, Young JAT. Anthrax toxins. Rev Physiol Biochem Pharmacol. 2004;152:135-64. .

  63. Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z, Finkelstein A, Collier RJ. A phenylalanine clamp catalyzes protein A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science. 2007;777(2005):777-82. .

  64. Krantz BA, Finkelstein A, Collier RJ. Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J Mol Biol. 2006;355(5):968-79. .

  65. Capone R, Blake S, Restrepo MR, Yang J, Mayer M. Designing nanosensors based on charged derivatives of gramicidin A. J Am Chem Soc. 2007;129(31):9737-45. .

  66. Abou Chaaya A, Le Poitevin M, Cabello-Aguilar S, Balme S, Bechelany M, Kraszewski S, Picaud F, Cambedouzou J, Balanzat E, Janot JM, Thami T, Miele P, Dejardin P. Enhanced ionic transport mechanism by gramicidin A confined inside nanopores tuned by atomic layer deposition. J Phys Chem C. 2013;117(29):15306-15. .

  67. Del Rio Martinez JM, Zaitseva E, Petersen S, Baaken G, Behrends JC. Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. Small. 2015;11(1):119-25. .

  68. Kelkar DA, Chattopadhyay A. The gramicidin ion channel: A model membrane protein. Biochim Biophys Acta-Biomembr. 2007;1768(9):2011-25. .

  69. Lepoitevin M, Ma T, Bechelany M, Janot JM, Balme S. Functionalization of single solid state nanopores to mimic biological ion channels: A review. Adv Colloid Interface Sci [Internet]. 2017;250:195-213. Available from: http:// dx.doi.org/10.1016/j.cis.2017.09.001. .

  70. Mannella CA, Forte M, Colombini M. Toward the molecular structure of the mitochondrial channel, VDAC. J Bioenerg Biomembr. 1992;24(1):1988-9. .

  71. Krammer EM, Homble F, Prevost M. Concentration dependent ion selectivity in VDAC: A molecular dynamics simulation study. PLoS One. 2011;6(12):1-13. .

  72. Zalk R, Israelson A, Garty ES, Azoulay-zohar H, Shoshan-barmatz V. Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. J Biochem Sci. 2005;83:73-83. .

  73. Watanabe H, Gubbiotti A, Chinappi M, Takai N, Tsumoto K, Kawano R. Analysis of pore formation and protein translocation using large biological nanopores. Anal Chem. 2017;89:11269-77. .

  74. Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, Kondos SC, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I, Saibil HR, Hoogenboom BW. Real-time visualization of perforin nanopore assembly. Nat Nanotechnol. 2017;12:467-75. .

  75. Spicer BA, Conroy PJ, Law RHP, Voskoboinik I, Whisstock JC. Perforin-A key (shaped) weapon in the immunological arsenal. Semin Cell Dev Biol [Internet]. 2017;72:117-23. Available from: https://doi. org/10.1016/j.semcdb.2017.07.033. .

  76. Walev I, Bhakdi SC, Hofmann F, Djonder N, Valeva A, Aktories K, Bhakdi S. Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc Natl Acad Sci U S A. 2001;98(6):3185-90. .

  77. Yasuga H, Kawano R, Takinoue M, Tsuji Y, Osaki T, Kamiya K, Miki N, Takeuchi S. Logic gate operation by DNA translocation through biological nanopores. PLoS One. 2016;11(2):1-13. .

  78. Nagamune H, Ohkura K, Sukeno A, Cowan G, Mitchell TJ, I to W, Ohnishi O, Hattori K, Yamato M, Hirota K, Miyake Y, Maeda T, Kourai H. The human-specific action of intermedilysin, a homolog of Streptolysin O, is dictated by domain 4 of the protein. Microbiol Immunol. 2004;48(9):677-92. .

  79. Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J. Assembly mechanism of the oligomeric streptolysin O pore: The early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J. 1998;17(6):1598-605. .

  80. Lawrence SL, Gorman MA, Feil SC, Tweten RK, Morton CJ, Parker MW, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK. Structural basis for receptor recognition by the article structural basis for receptor recognition by the human CD59-responsive. Structure [Internet]. 2016;24(9): 1488-98. Available from: http:// dx.doi.org/10.1016/j.str.2016.06.017. .

  81. Gutierrez MG, Saka HA, Chinen I, Zoppino FCM, Yoshimori T, Bocco JL, Colombo MI. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci U S A. 2007;104(6):1829-34. .

  82. Olson R, Gouaux E. Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. J Mol Biol. 2005;9:997-1016. .

  83. De S, Olson R. Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc Natl Acad Sci U S A. 2011;108(18):7385-90. .

  84. Gribov NN, Theeuwen SJCH, Caro J, Radelaar S. A new fabrication process for metallic point contacts. Microelectron Eng. 1997;35:317-20. .

  85. Li J, McMullan C, Branton D, Aziz MJ, Stein D, Golovchenko JA. Ion-beam sculpting at nanometre length scales. Nature [Internet]. 2002;412(6843):166-9. Available from: http://www.nature.com/doifinder/10.1038/35084037. .

  86. Storm AJ, Chen JH, Zandbergen HW, Dekker C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E. 2005;71(5):1-10. .

  87. Choi W, Jeon ES, Chun KY, Kim YR, Park KB, Kim KB, Han CS. A low-noise silicon nitride nanopore device on a polymer substrate. PLoS One. 2018;13(7):1-12. .

  88. Kwok H, Briggs K, Tabard-Cossa V. Nanopore fabrication by controlled dielectric breakdown. PLoS One. 2014;9(3):1-6. .

  89. Park SR, Peng H, Ling XS. Fabrication of nanopores in silicon chips using feedback chemical etching. Small. 2007;3(1):116-9. .

  90. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater. 2003;2(8):537-40. .

  91. Siwy ZS, Davenport M. Graphene opens up to DNA. Nat Nanotechnol. 2010;5(10):697-8. .

  92. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson ATC, Drndic M. DNA translocation through graphene nanopores. Nano Lett. 2010;10(8):2915-21. .

  93. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010;10(3):751-8. .

  94. Wang J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis. 2005;17(1):7-14. .

  95. Tsuchiya H, Macak JM, Sieber I, Schmuki P. Self-organized high-aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization. Small. 2005;1(7):722-5. .

  96. Ingham CJ, ter Maat J, de Vos WM. Where bio meets nano: The many uses for nanoporous aluminum oxide in biotechnology. Biotechnol Adv. 2012;30(5):1089-99. .

  97. Santos A, Kumeria T, Losic D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. TrAC Trends Anal Chem. 2013;44:25-38. .

  98. Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang ZY, Dresselhaus MS, Li LJ, Kong J. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010;10(10):4134-9. .

  99. Liu S, Lu B, Zhao Q, Li J, Gao T, Chen Y, Zhang Y, Liu Z, Fan Z, Yang F, Liping Y, Yu D. Boron nitride nanopores: Highly sensitive DNA single-molecule detectors. Adv Mater. 2013;25(33):4549-54. .

  100. Zhang Y, Shi Q, Liu Y, Wang Y, Meng Z, Xiao C, Deng K, Rao D, Lu R. Hexagonal boron nitride with designed nanopores as a high-efficiency membrane for separating gaseous hydrogen from methane. J Phys Chem C. 2015;119(34):19826-31. .

  101. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010;10(8):3209-15. .

  102. Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J. Large-area vapor-phase growth and characterization of MoS 2 atomic layers on a SiO 2 substrate. Small. 2012;8(7):966-71. .

  103. Liu K, Feng J, Kis A, Radenovic A. Atomically thin mo-lybdenum disulfide nanopores with high sensitivity for dna translocation. ACS Nano. 2014;8(3):2504-11. .

  104. Wu MY, Krapf D, Zandbergen M, Zandbergen H, Batson PE. Formation of nanopores in a SiN/SiO 2 membrane with an electron beam. Appl Phys Lett [Internet]. 2005;87(11):4-7. Available from: https://doi. org/10.1063/1.2043247. .

  105. Shim J, Rivera J, Bashir R. In endometrial hyperplasias, the molecular-genetics and morphometry-based EIN classification more accurately predicts cancer-progression than the WHO94. Cancer. 2005;103(11):2304-12. .

  106. Steinbock LJ, Otto O, Chimerel C, Gornall J, Keyser UF. Detecting DNA folding with nanocapillaries. Nano Lett. 2010;10(7):2493-7. .

  107. Gao C, Ding S, Tan Q, Gu L-Q. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. Anal Chem. 2009;81(1):80-6. .

  108. An R, Uram JD, Yusko EC, Ke K, Mayer M, Hunt AJ. Ultrafast laser fabrication of submicrometer pores in borosilicate glass. Opt Lett [Internet]. 2008;33(10):1153-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 18483543%0A; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2722875. .

  109. Steinbock LJ, Bulushev RD, Krishnan S, Raillon C, Radenovic A. DNA translocation through low-noise glass nanopores. ACS Nano. 2013;7(12):11255-62. .

  110. Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC, Li J, Yang J, Mayer M. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol. 2011;6(4):253-60. .

  111. Hernandez-Ainsa S, Muus C, Bell NAW, Steinbock LJ, Thacker VV, Keyser UF. Lipid-coated nanocapillaries for DNA sensing. Analyst. 2013;138(1):104-6. .

  112. Venkatesan BM, Polans J, Comer J, Sridhar S, Wendell D, Aksimentiev A, Bashir R. Lipid bilayer coated Al2O3 nanopore sensors: Towards a hybrid biological solid-state nanopore. Biomed Microdevices. 2011;13(4): 671-82. .

  113. Farimani AB, Dibaeinia P, Aluru NR. DNA origami-graphene hybrid nanopore for DNA detection. ACS Appl Mater Interfaces. 2017;9(1):92-100. .

  114. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz M, McCombie WR. Oxford Nanopore Sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. 2015;25:1750-6. .

  115. Heron M. Deaths: Leading causes for 2013. Natl Vital Stat Reports. 2016;65(2):1-95. .

  116. Shaw LM, Korecka M, Clark CM, Lee VMY, Trojanowski JQ. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov. 2007;6(4):295-303. .

  117. Mawuenyega KG, Kasten T, Sigurdson W, Bateman RJ. Amyloid-beta isoform metabolism quantitation by stable isotope labeled kinetics. Anal Biochem. 2013; 440(1):56-62. .

  118. Racke MM, Boone LI, Hepburn DL, Parsadainiana M, Bryan MAT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, Holtzman DM, Bales KR, Gitter BD, May PC, Paul SM, DeMattos RB. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid. J Neurosci. 2005;25(3):629-36. .

  119. Song C, Deng P, Que L. Rapid multiplexed detection of beta-amyloid and totaltau as biomarkers for Alzheimer's disease in cerebrospinal fluid. Nanomedicine [Internet]. 2018;14(6): 1845-52. Available from: http://dx.doi. org/10.1016/j.nano.2018.05.013. .

  120. Sanabria-Castro A, Alvarado-Echeverria I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer's disease: an update. Ann Neurosci [Internet]. 2017;24(1):46-54. Available from: http://www.ncbi.nlm.nih.gov/pub-med/28588356%0Ahttp://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=PMC5448443. .

  121. Sharma N, Singh AN. Exploring biomarkers for Alzheimer's disease. J Clin Diagn Res. 2016;10(7):1-6. .

  122. Fayyad M, Salim S, Majbour N, Erskine D, Stoops E, Mollenhauer B, El-Agnaf OMA. Parkinson's disease biomarkers based on alpha-synuclein. J Neurochem [Internet]. 2019;1-20. Available from: https://onlinelibrary. wiley.com/doi/abs/10.1111/jnc.14809. .

  123. Grasso M, Piscopo P, Confaloni A, Denti MA. Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules. 2014;19(5):6891-910. .

  124. Martin W, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: A potential biomarker of disease status. Neurology. 2019;70:1411-8. .

  125. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson's disease: Loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005;128(6):1314-22. .

  126. Li X, Tong X, Lu W, Yu D, Diao J, Zhao Q. Label-free detection of early oligomerization of a-synuclein and its mutants A30P/E46K through solid-state nanopores. Nanoscale [Internet]. 2019;11(13):6480-8. Available from: http://dx.doi.org/10.1039/c9nr00023b. .

  127. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, Montinbe TJ, Hancock AM, Hwang H, Pan C, Bradner J, Kang UJ, Jensen PH, Zhang J. DJ-1 and a-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain. 2010;133(3):713-26. .

  128. Crippa JAS, Hallak JEC, Zuardi AW, Guimaraes FS, Tumas V, dos Santos RG. Is cannabidiol the ideal drug to treat non-motor Parkinson's disease symptoms? Eur Arch Psychiatry Clin Neurosci [Internet]. 2019;269(1):121-33. Available from: http://dx.doi.org/10.1007/s00406-019-00982-6. .

  129. Tavassoly O, Kakish J, Nokhrin S, Dmitriev O, Lee JS. The use of nanopore analysis for discovering drugs which bind to a-synuclein for treatment of Parkinson's disease. Eur J Med Chem [Internet]. 2014;88:42-54. Available from: http://dx.doi.org/10.1016/j.ejmech.2014.07 .090. .

  130. Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: Insights from Huntington's disease. Trends Neurosci [Internet]. 2010;33(11):513-23. Available from: http://dx.doi.org/10.1016/j.tins.2010.08.002. .

  131. Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series. EMBO Rep. 2004;5(10):958-63. .

  132. Victorson D, Carlozzi NE, Frank S, Beaumont JL, Cheng W, Gorin B, Duh MS, Samuelson D, Tulsky D, Gutierrez S, Nowinski CJ, Mueller A, Shen V, Sung V. Identifying motor, emotional-behavioral, and cognitive deficits that comprise the triad of HD symptoms from patient, caregiver, and provider perspectives. Tremor Other Hyperkinet Mov. 2014;4:1-11. .

  133. Raymond LA, Andre VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington's disease: Time-dependent alterations in synaptic and receptor function. Neuroscience [Internet]. 2011;198:252-73. Available from: http://dx.doi. org/10.1016/j.neuroscience.2011.08.052. .

  134. Conradi S, Grimby L, Lundemo G. Pathophysiology of fasciculations in ALS as studied by electromyography of single motor units. Muscle Nerve. 1982;5(3):202-8. .

  135. Orrell RW, Habgood JJ, Malaspina A, Mitchell J, Greenwood J, Lane RJM, deBelleroche JS. Clinical characteristics of SOD1 gene mutations in UK families with ALS. J Neurol Sci. 1999;169:56-60. .

  136. Juergens SM, Kurland LT, Okazaki H, Mulder DW. ALS in Rochester, Minnesota, 1925-1977. Neurology. 1980;30(5):463-463. .

  137. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW. Onset and progression in inherited ALS determined by motor neurons and microglia. Science [Internet]. 2006;312:1389-92. Available from: http://www.science-mag.org/content/312/5778/1389.abstract. .

  138. Held XA, Major P, Sahin XA, Reenan RA, Lipscombe XD, Wharton XKA. Circuit dysfunction in SOD1 - ALS model first detected in sensory feedback prior to motor neuron degeneration is alleviated by BMP signaling. J Neurosci. 2019;39(12):2347-64. .

  139. Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci [Internet]. 2004;27(1):723-49. Available from: http://www.annualreviews.org/ doi/10.1146/annurev.neuro.27.070203.144244. .

  140. Kolb SJ, Kissel JT. Spinal muscular atrophy: A timely review. Arch Neurol. 2011;68(8):979-84. .

  141. Rodillo E, Marini ML, Heckmatt JZ, Dubowitz V. Scoliosis in spinal muscular atrophy: Review of 63 cases. J Child Neurol. 1989;4(2):118-23. .

  142. Muller B, Melki J, Burlet P, Clerget-Darpoux F. Proximal spinal muscular atrophy (SMA) types II and III in the same sibship are not caused by different alleles at the SMA locus on 5q. Am J Hum Genet. 1992;50(5):892-5. .

  143. Burghes AHM, Beattie CE. Spinal muscular atrophy: Why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci [Internet]. 2009;10(8):597-609. Available from: http://dx.doi. org/10.1038/nrn2670. .

  144. Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR. Determinants of Exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. 2005;78(1):63-77. .

  145. Glascock JJ, Osman EY, Wetz MJ, Krogman MM, Shababi M, Lorson CL. Decreasing disease severity in symptomatic, Smn -/-; SMN2 +/+, spinal muscular atrophy mice following scAAV9-SMN delivery. Hum Gene Ther. 2012;23(3):330-5. .

  146. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Tortosa EG, del Ser T, Munoz DG, de Yebenes JG. The new mutation, E46K, of alpha-synuclein causes parkinson and Lewy body dementia. Ann Neurol [Internet]. 2004;55(2):164-73. Available from: http://dx. doi.org/10.1002/ana.10795. .

  147. McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK, Aarsland D, Arai H, Ballard CG, Boeve B, Burn DJ, Costa D, Del Ser T, Dubois B, Galasko D, Gauthier S, Goetz CG, Gomez-Tortosa E, Halliday G, Hansen LA, Hardy J, Iwatsubo T, Kalaria RN, Kaufner D, Kenny RA, Korczyn A, Kosaka K, Lee VMY, Lees A, Litvan I, Londos E, Lopez OL, Minoshima S, Mizuno Y, Molina JA, Mukaetova-Ladinsk EB, Pasquier F, Perry RH, Schulz JB, Trojanowski JQ, Yamada M. Diagnosis and management of dementia with Lewy bodies: Third report of the DLB consortium. Neurology. 2005;65(12):1863-72. .

  148. Gibb RG, Esiri MM, Lees AJ. Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain. 1985;110:1131-53. .

  149. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A [Internet]. 1998;95( 11):6469-73. Available from: http://www.pnas. org/cgi/doi/10.1073/pnas.95.11.6469. .

  150. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe DM, Mira SS, Byrne EJ, Lennox G, Quinn NP, Edwardson JA, Ince PG, Bergeron C, Burns A, Miller BL, Loveston S, Collerton D, Jansen ENH, Ballard C, de Vos RAI, Wilcock GK, Jellinger KA, Perry RH. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the consortium on DLB international workshop. Neurology. 1996;47(5): 1113-24. .

  151. Tavassoly O, Lee JS. Methamphetamine binds to asynuclein and causes a conformational change which can be detected by nanopore analysis. FEBS Lett [Internet]. 2012;586(19): 3222-8. Available from: http://dx.doi. org/10.1016/j.febslet.2012.06.040. .

  152. Boiko A, Vorobeychik G, Paty D, Devonshire V, Sadovnick D. Early onset multiple sclerosis: A longitudinal study. Neurol Sci. 2000;21:1006-10. .

  153. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002;346(3):165-73. .

  154. Wingerchuk DM, Lucchinetti CF, Noseworthy JH. Multiple sclerosis: Current pathophysiological concepts. Lab Investig. 2001;81(3):263-81. .

  155. Milo R, Miller A. Revised diagnostic criteria of multiple sclerosis. Autoimmun Rev [Internet]. 2014;13:518-24. Available from: http://dx.doi.org/10.1016/j.autrev. 2014.01.012. .

  156. Nortvedt MW, Riise T, Frugard J, Mohn J, Bakke A, Skar AB, Nyland H, Glad SB, Myhr KM. Prevalence of bladder, bowel and sexual problems among multiple sclerosis patients two to five years after diagnosis. Mult Scler. 2007;13:106-12. .

  157. Korn T. Pathophysiology of multiple sclerosis. J Neurol. 2008;255:2-6. .

  158. Munger KL, Ebers GC, Sadovnick AD, Veith R, O'Reilly E, Ascherio A. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2012;63:60-5. .

  159. Unser S, Bruzas I, He J, Sagle L. Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors. 2015;15(7):15684-716. .

  160. Baran C, Smith GST, Bamm VV, Harauz G, Lee JS. Divalent cations induce a compaction of intrinsically disordered myelin basic protein. Biochem Biophys Res Commun [Internet]. 2010;391(1):224-9. Available from: http://dx.doi.org/10.1016/j.bbrc.2009.11.036. .

  161. Koeppen AH. Friedreich's ataxia: Pathology, pathogenesis, and molecular genetics. J Neurol Sci [Internet]. 2011;303:1-12. Available from: http://dx.doi. org/10.1016/j.jns.2011.01.010. .

  162. Vorgerd M, Schols L, Hardt C, Ristow M, Epplen JT, Zange J. Mitochondrial impairment of human muscle in Friedreich ataxia in vivo. Neuromuscul Disord. 2000;10(6):430-5. .

  163. Patel PI, Isaya G. Friedreich Ataxia: From GAA triplet-repeat expansion to frataxin deficiency. Am J Hum Genet. 2001;69:15-24. .

  164. McGinty RJ, Rubinstein RG, Neil AJ, Dominska M, Kiktev D, Petes TD, Mirkin SM. Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res. 2017;27(12):2072-82. .

  165. Menestrina G. Ionic channels formed by Staphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations. J Membrain Biol. 1986;90:177-90. .

  166. Miles G, Bayley H, Cheley S. Properties of Bacillus cereus hemolysin II: A heptameric transmembrane pore. Protein Sci. 2002;11:1813-24. .

  167. Thormann A, Teuscher N, Pfannmoller M, Rothe U, Heilmann A. Nanoporous aluminum oxide membranes for filtration and biofunctionalization, Small, 2007; 3(6):1032-40. .


Articles with similar content:

Raf Kinase Inhibitory Protein (RKIP): Functional Pleiotropy in the Mammalian Brain
Critical Reviews™ in Oncogenesis, Vol.19, 2014, issue 6
Lucia Mendoza-Viveros, Hai-Ying M. Cheng, Harrod H. Ling, Neel Mehta
Modulation of Intracellular Signaling Using Protein-Transduction Technology
Critical Reviews™ in Immunology, Vol.30, 2010, issue 5
Nao Jounai, Akihide Ryo, Toshihiro Horii, Ken J. Ishii, Koichi Suzuki, Kouji Kobiyama, Fumihiko Takeshita
BIOPRESERVATION: HEAT/MASS TRANSFER CHALLENGES AND BIOCHEMICAL/GENETIC ADAPTATIONS IN BIOLOGICAL SYSTEMS
Heat Transfer Research, Vol.44, 2013, issue 3-4
Ram V. Devireddy
Hippo Kinases MST1/2 Regulate Immune Cell Functions in Cancer, Infection, and Autoimmune Diseases
Critical Reviews™ in Eukaryotic Gene Expression, Vol.30, 2020, issue 5
Xuelian Hu, Yejin Cao, Yujing Bi, Anna Jia, Yuexin Wang, Qiuli Yang, Guangwei Liu, Yufei Wang
Reassessment of Therapeutic Applications of Carbon Nanotubes: A Majestic and Futuristic Drug Carrier
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.37, 2020, issue 4
Aarif Ahsan, Bharti Mangla, Waquar Ahsan, Kanchan Kohli, Shamama Javed