图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
生物医学工程评论综述™

ISSN 打印: 0278-940X
ISSN 在线: 1943-619X

生物医学工程评论综述™

DOI: 10.1615/CritRevBiomedEng.v39.i1.40
pages 45-61

In Vitro Microelectrode Array Technology and Neural Recordings

Yoonkey Nam
Department of Bio and Brain Engineering, KAIST
Bruce C. Wheeler
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida at Gainesville, Gainesville, FL

ABSTRACT

In vitro microelectrode array (MEA) technology has evolved into a widely used and effective methodology to study cultured neural networks. An MEA forms a unique electrical interface with the cultured neurons in that neurons are directly grown on top of the electrode (neuron-on-electrode configuration). Theoretical models and experimental results suggest that physical configuration and biological environments of the cell-electrode interface play a key role in the outcome of neural recordings, such as yield of recordings, signal shape, and signal-to-noise ratio. Recent interdisciplinary approaches have shown that MEA performance can be enhanced through novel nanomaterials, structures, surface chemistry, and biotechnology. In vitro and in vivo neural interfaces share some common factors, and in vitro neural interface issues can be extended to solve in vivo neural interface problems of brain-machine interface or neuromodulation techniques.