图书馆订阅: Guest
强化传热期刊

每年出版 8 

ISSN 打印: 1065-5131

ISSN 在线: 1563-5074

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00037 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.6 SJR: 0.433 SNIP: 0.593 CiteScore™:: 4.3 H-Index: 35

Indexed in

MEASUREMENT AND PREDICTION OF VAPOR-SPACE CONDENSATION OF REFRIGERANTS ON TRAPEZOIDAL-FINNED AND TURBO-C GEOMETRIES

卷 20, 册 1, 2013, pp. 59-71
DOI: 10.1615/JEnhHeatTransf.2013006779
Get accessGet access

摘要

This paper reports vapor-space condensation heat transfer measurements for R123, R134a, and R245fafor the integral trapezoidal fin, and the Turbo-CII geometries on vertical plates. The data consisted of heat flux and wall temperature difference measurements. Condensation heat transfer measurements on a smooth plate agreed well with both measurements and predictions from the literature. Overall, the heat transfer performance of the three refrigerants on the trapezoidal fin was within approximately 8 kW/m2 of one another. Similarly, the condensation heat flux for R134a and R245fa on the Turbo-CII was within approximately 18 kW/m2 of each other, while the heat flux ofR123 on the Turbo-CII was between 10 and 80 kW/m2 less than that of R245fa. An existing finned tube condensation model was modified to be expressed in terms of the gradient of the condensate curvature with respect to the length of the liquid−vapor interface. Curvature gradients for the two surfaces were developed that, when substituted into the modified model, predicted the present measured driving temperature differences for the trapezoidal fin and the Turbo-CII to within 0.4 and 1.2 K, respectively, for all measurements except for R123 on the Turbo-CII surface. With the aid of the curvature gradients, simple models were developed to predict the performance of the trapezoidal, low-finned tube, and the Turbo-C tube. The heat flux to the low-finned tube and the Turbo-C tube were predicted to within 10% and 15%, respectively, of the measured values from the literature for four different fluids.

对本文的引用
  1. Chen Tailian, Wu Daniel, Enhancement in heat transfer during condensation of an HFO refrigerant on a horizontal tube with 3D fins, International Journal of Thermal Sciences, 124, 2018. Crossref

  2. Glushchuk Andrey, Minetti Christophe, Machrafi Hatim, Iorio Carlo S., Experimental investigation of force balance at vapour condensation on a cylindrical fin, International Journal of Heat and Mass Transfer, 108, 2017. Crossref

  3. Yang Xiaowei, Liu Yanjun, Chen Yun, Zhang Li, Optimization Design of the Organic Rankine Cycle for an Ocean Thermal Energy Conversion System, Energies, 15, 18, 2022. Crossref

将发表的论文

Flow Boiling Heat Transfer in Microchannel Heat Exchangers with Micro Porous Coating Surface Kuan-Fu Sung, I-Chuan Chang, Chien-Yuh Yang Enhancement Evaluation Criteria for Pool Boiling Enhancement Structures in Electronics Cooling: CHF Enhancement Ratio (ER-CHF) and Enhancement Index (EI) Maharshi Shukla, Satish Kandlikar Influence of transient heat pulse on heat transfer performance of vapor chamber with different filling ratios Zhou Wang, Li Jia, Hongling Lu, Yutong Shen, Liaofei Yin Effect of Geometrical Parameters on the Thermal-Hydraulic Performance of Internal Helically Ribbed Tubes Wentao Ji, Yi Du, Guo-Hui Ou, Pu-Hang Jin, Chuang-Yao Zhao, Ding-Cai Zhang, Wen-Quan Tao Condensation heat transfer in smooth and three-dimensional dimpled tubes of various materials Wei Li In Memoriam of Professor Ralph L. Webb on the anniversary of his 90th birthday Wei Li Analysis of the Single-Blow Transient Testing Technique for Non-metallic Heat Exchangers Wentao Li, Kun Sun, Guoyan ZHOU, Xing Luo, Shan-Tung Tu, Stephan Kabelac, Ke Wang Evaluation of Heat Transfer Rate of Double-Layered Heat Sink Cooling System with High Energy Dissipation El Bachir Lahmer, Jaouad Benhamou, Youssef Admi, Mohammed Amine Moussaoui, Ahmed Mezrhab, Rakesh Kumar Phanden Experimental Investigation on Behavior of a Diesel Engine with Energy, Exergy, and Sustainability Analysis Using Titanium Oxide (Tio2) Blended Diesel and Biodiesel AMAN SINGH RAJPOOT, TUSHAR CHOUDHARY, ANOOP SHUKLA, H. CHELLADURAI, UPENDRA RAJAK, ABHINAV ANAND SINHA COLLISION MORPHOLOGIES OF SUPERCOOLED WATER DROPLETS ON SMALL LOW-TEMPERATURE SUPERHYDROPHOBIC SPHERICAL TARGETS Xin Liu, Yiqing Guo, Jingchun Min, Xuan ZHANG, Xiaomin Wu Pool boiling heat transfer characteristics of porous nickel microstructure surfaces Kun-Man Yao, Mou Xu, Shuo Yang, Xi-Zhe Huang, Dong-chuan MO, Shu-Shen Lyu Field experimental investigation of the insulation deterioration characteristics of overhead pipeline for steam heating network Junguang Lin, Jianfa Zhao, Xiaotian Wang, Kailun Chen, Liang Zhang A parametric and comparative study on bare-tube banks and new-cam-shaped tube banks for waste heat recovery applications Ngoctan Tran, Jane-Sunn Liaw, Chi-Chuan Wang
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain