图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
强化传热期刊
影响因子: 0.562 5年影响因子: 0.605 SJR: 0.211 SNIP: 0.361 CiteScore™: 0.33

ISSN 打印: 1065-5131
ISSN 在线: 1026-5511

强化传热期刊

DOI: 10.1615/JEnhHeatTransf.2012000620
pages 191-197

TURBULENT CONVECTIVE HEAT TRANSFER OF SUSPENSIONS OF Γ-AL2O3 AND CUO NANOPARTICLES (NANOFLUIDS)

Seyed Gholamreza Etemad
Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
B. Farajollahi
Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
M. Hajipour
Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
Jules Thibault
Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Departement de Genie chimique, University Laval Sainte-Foy (Quebec) Canada G1К 7P4; McMaster University, Hamilton, Ontario L8S 4L7

ABSTRACT

This study presents the results of an experimental investigation on convective heat-transfer behavior of two nanofluids. Nanoparticles used in the experiments were γ-alumina (γ-Al2 O3) and copper oxide (CuO) with different mean diameters. The nanoparticles were dispersed in distilled water as the base fluid. Convective heat-transfer coefficients were measured in a horizontal tube under turbulent flow conditions for different nanoparticle concentrations. Results show that adding nanoparticles into the base fluid enhances the convective heat-transfer coefficient and the Nusselt number of the suspensions. The convective heat transfer of nanofluids increases with nanoparticle volume concentration.


Articles with similar content:

HEAT TRANSFER AND FLUID FLOW STUDY OF CuO-W/EG(50:50) NANOFLUIDS THROUGH ALUMINIUM MICROCHANNELS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Dasaroju Gangacharyulu, Harkirat Sandhu
EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HEAT TRANSFER AND PRESSURE DROP ON PERFORMANCE OF A FLAT TUBE BY USING WATER-BASED Al2O3 NANOFLUIDS
International Journal of Energy for a Clean Environment, Vol.19, 2018, issue 1-2
Vijaya Kumar Bulasara, Gangacharyulu Dasaroju, Gurpreet Singh
EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER AND PRESSURE DROP PERFORMANCE OF FLAT TUBE BY USING WATER BASED Al2O3 NANOFLUIDS
Second Thermal and Fluids Engineering Conference, Vol.38, 2017, issue
Vijaya Kumar Bulasara, Gangacharyulu Dasaroju, Gurpreet Singh
LAMINAR FORCED FLOW AND HEAT TRANSFER ENHANCEMENT BY USING WATER-BASED NANOFLUIDS IN A MICROCHANNEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Cong Tam Nguyen, Mojtaba Jarrahi Khameneh, Nicolas Galanis
Convective Heat Transfer in a Wavy Channel Utilizing Nanofluids
Journal of Enhanced Heat Transfer, Vol.14, 2007, issue 4
Javad Rostami