图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
强化传热期刊
影响因子: 0.562 5年影响因子: 0.605 SJR: 0.211 SNIP: 0.361 CiteScore™: 0.33

ISSN 打印: 1065-5131
ISSN 在线: 1026-5511

强化传热期刊

DOI: 10.1615/JEnhHeatTransf.2012002361
pages 271-292

EFFECT OF INLET CONFIGURATION ON DISTRIBUTION OF AIR-WATER ANNULAR FLOW IN A HEADER OF A PARALLEL FLOW HEAT EXCHANGER

Nae-Hyun Kim
Department of Mechanical Engineering, Incheon National University, 12-1 Songdo-Dong, Yeonsu-Gu Inchon, 22012, Korea
H. W. Byun
Department of Mechanical Engineering, University of lncheon, 12-1, Songdo-Dong, Yeonsu-gu, Incheon, 406-772, Republic of Korea

ABSTRACT

The effect of inlet configuration (parallel, normal, vertical) on flow distribution in a parallel flow heat exchanger consisting of round headers and ten flat tubes is experimentally investigated using air and water. The effects of tube protrusion depth as well as mass flux and quality are investigated both for the downward and upward flow configurations. It is shown that the best flow distribution is obtained for the vertical inlet configuration, followed by normal and parallel inlet configurations. For downward flow, a significant amount of water flowed into the frontal channels. As the protrusion depth increases, more water is forced to the rear part of the header. The effect is most significant for the parallel inlet, followed by the normal and vertical inlet. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. For upward flow, a significant amount of water flows through the rear part of the header. The effect of the protrusion depth is the same as that of the downward flow. However, the effect of mass flux or quality is opposite the downward flow. A possible explanation is provided based on flow visualization results. Correlations were developed to predict the fraction of liquid or gas taken off by a downstream channel as a function of header gas or liquid Reynolds number immediately upstream.


Articles with similar content:

Two-Phase Refrigerant Distribution in a Parallel-Flow Heat Exchanger
Journal of Enhanced Heat Transfer, Vol.17, 2010, issue 1
D. Y. Kim, Nae-Hyun Kim
TWO-PHASE FLOW DISTRIBUTION IN A HEADER OF A PARALLEL FLOW HEAT EXCHANGER
International Heat Transfer Conference 13, Vol.0, 2006, issue
T. Park, S. Han, Nae-Hyun Kim
PRESSURE DROP OF BOILING SUBCOOLED WATER AND STEAM-WATER MIXTURE FLOWING IN HEATED CHANNELS
International Heat Transfer Conference 3 , Vol.15, 1966, issue
V. I. Hlopushin, N.V. Tarasova, V. M. Orlov, Alexander Leontiev
SPLITTING CHARACTERISTICS AND FLOW DISTRIBUTION OF GAS-LIQUID FLOW IN TWO PARALLEL PIPES
Multiphase Science and Technology, Vol.22, 2010, issue 3
Yehuda Taitel, Bella Gurevich, Dvora Barnea
A DIMENSIONLESS CORRELATION FOR HEAT TRANSFER IN FORCED CONVECTION CONDENSATION
International Heat Transfer Conference 5, Vol.5, 1974, issue
Roberto Zecchin, Alberto Cavallini