图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际不确定性的量化期刊
影响因子: 3.259 5年影响因子: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN 打印: 2152-5080
ISSN 在线: 2152-5099

Open Access

国际不确定性的量化期刊

DOI: 10.1615/Int.J.UncertaintyQuantification.2016018661
pages 501-514

FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION

Ajay Jasra
Department of Statistics & Applied Probability, National University of Singapore, Singapore
Kody J. H. Law
School of Mathematics, University of Manchester, Manchester, UK, M13 9PL
Yan Zhou
Department of Statistics & Applied Probability National University of Singapore, Singapore

ABSTRACT

This paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined,s as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are used for a priori and a posteriori estimation, respectively, of quantities of interest. These algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.


Articles with similar content:

A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
Ajay Jasra, Yan Zhou, Kengo Kamatani, Kody J. H. Law
HIGH DIMENSIONAL SENSITIVITY ANALYSIS USING SURROGATE MODELING AND HIGH DIMENSIONAL MODEL REPRESENTATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Edmondo Minisci, Marco Cisternino, Martin Kubicek
VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Yuming Ba, Na Ou, Lijian Jiang
BAYESIAN APPROACH TO THE STATISTICAL INVERSE PROBLEM OF SCATTEROMETRY: COMPARISON OF THREE SURROGATE MODELS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 6
Markus Bar, Sebastian Heidenreich, Hermann Gross
A NOVEL GLOBAL METHOD FOR RELIABILITY ANALYSIS WITH KRIGING
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 5
Zhengming Wang, Xiaojun Duan, Zigan Zhao