图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际不确定性的量化期刊
影响因子: 4.911 5年影响因子: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN 打印: 2152-5080
ISSN 在线: 2152-5099

Open Access

国际不确定性的量化期刊

DOI: 10.1615/Int.J.UncertaintyQuantification.2016016194
pages 141-156

SOFTWARE RELIABILITY GROWTH MODEL WITH TEMPORAL CORRELATION IN A NETWORK ENVIRONMENT

Jiajun Xu
School of Computer Science and Engineering, Beihang University, Beijing 100191, China
Shuzhen Yao
School of Computer Science and Engineering, Beihang University, Beijing 100191, China
Shunkun Yang
School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
Peng Wang
School of Mathematics and Systems Science, Beihang University, Beijing, China

ABSTRACT

Increasingly software systems are developed to provide great flexibility to customers but also introduce great uncertainty for system development. The uncertain behavior of fault-detection rate has irregular fluctuation and is described as a Markovian stochastic processes (white noise). However, in many cases the white noise idealization is insufficient, and real fluctuations are always correlated and correlated fluctuations (or colored noise) are non-Markovian stochastic processes. We develop a new model to quantify the uncertainties within non-homogeneous Poisson process (NHPP) in the noisy environment. Based on a stochastic model of the software fault detection process, the environmental uncertainties collectively are treated as a noise of arbitrary distribution and correlation structure. Based on the stochastic model, the analytical solution can be derived. To validate our model, we consider five particular scenarios with distinct environmental uncertainty. Experimental comparisons with existing methods demonstrate that the new framework shows a closer fitting to actual data and exhibits a more accurately predictive power.


Articles with similar content:

A MIXED UNCERTAINTY QUANTIFICATION APPROACH USING EVIDENCE THEORY AND STOCHASTIC EXPANSIONS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Tyler Winter, Serhat Hosder, Harsheel Shah
APPLICATIONS OF SIMPLEX ACCURATE METHOD IN THE 200MW CONDENSING TURBINE SET'S THERMAL SYSTEM
Energy and Environment, 1995, Vol.0, 1995, issue
JiTang Liu, RongHua Ge, WeiEn Wang
THERMAL COMFORT MONITORING IN COMMERCIAL BUILDINGS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Jiri Rojicek , Jiri Vass, Jana Trojanova
DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Bert J. Debusschere, Habib N. Najm, Peter Thornton, Cosmin Safta, Khachik Sargsyan, Daniel Ricciuto
PRIOR AND POSTERIOR ROBUST STOCHASTIC PREDICTIONS FOR DYNAMICAL SYSTEMS USING PROBABILITY LOGIC
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Alexandros Taflanidis, James L. Beck