图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际不确定性的量化期刊
影响因子: 3.259 5年影响因子: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN 打印: 2152-5080
ISSN 在线: 2152-5099

Open Access

国际不确定性的量化期刊

DOI: 10.1615/Int.J.UncertaintyQuantification.2012003562
pages 363-381

A HOLISTIC APPROACH TO UNCERTAINTY QUANTIFICATION WITH APPLICATION TO SUPERSONIC NOZZLE THRUST

Christopher J. Roy
Aerospace and Ocean Engineering Department, Virginia Tech, Blacksburg, Virginia 24061, USA
Michael S. Balch
Applied Biomathematics, Setauket, New York 11733, USA

ABSTRACT

In modeling and simulation (M&S), we seek to predict the state of a system using a computer-based simulation of a differential equation-based model. In general, the inputs to the model may contain uncertainty due to inherent randomness (aleatory uncertainty), a lack of knowledge (epistemic uncertainty), or a combination of the two. In many practical cases, there is so little knowledge of a model input that it should be characterized as an interval, the weakest statement of knowledge. When some model inputs are probabilistic and others are intervals, segregated uncertainty propagation should be used. The resulting uncertainty structure on the M&S output can take the form of a cumulative distribution function with a finite width; i.e., a p-box. Implications of sampling over interval versus probabilistic uncertainties in the outer loop are discussed and examples are given showing the effects of the choice of uncertainty propagation and characterization methods. In addition to the uncertainties in model inputs, uncertainties also arise due to modeling deficiencies and numerical approximations. Modeling uncertainties can be reduced by performing additional experiments and numerical uncertainties can be reduced by using additional computational resources; thus, both sources of uncertainty can be modeled as epistemic and can be characterized as intervals and included in the total predictive uncertainty by appropriately broadening the prediction p-box. A simple example is given for the M&S predictions of supersonic nozzle thrust that incorporates and quantifies all three sources of uncertainty.


Articles with similar content:

PRIOR AND POSTERIOR ROBUST STOCHASTIC PREDICTIONS FOR DYNAMICAL SYSTEMS USING PROBABILITY LOGIC
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Alexandros Taflanidis, James L. Beck
CHARACTERIZING UNCERTAINTIES IN A THERMAL STORAGE PACKED BED USING BAYESIAN INFERENCEWITH MCMC AND VARIATIONAL APPROXIMATIONS
Second Thermal and Fluids Engineering Conference, Vol.50, 2017, issue
Ashley F. Emery, Sang Ien
DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Bert J. Debusschere, Habib N. Najm, Peter Thornton, Cosmin Safta, Khachik Sargsyan, Daniel Ricciuto
VARIANCE-BASED SENSITIVITY INDICES OF COMPUTER MODELS WITH DEPENDENT INPUTS: THE FOURIER AMPLITUDE SENSITIVITY TEST
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 6
S. Tarantola, Thierry A. Mara
ON THE ROBUSTNESS OF STRUCTURAL RISK OPTIMIZATION WITH RESPECT TO EPISTEMIC UNCERTAINTIES
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 1
W. J. S. Gomes, F. A. V. Bazan, Andre T. Beck