图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际不确定性的量化期刊
影响因子: 3.259 5年影响因子: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN 打印: 2152-5080
ISSN 在线: 2152-5099

Open Access

国际不确定性的量化期刊

DOI: 10.1615/Int.J.UncertaintyQuantification.2014010945
pages 49-72

A GRADIENT-BASED SAMPLING APPROACH FOR DIMENSION REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS

Miroslav Stoyanov
Applied Mathematics Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, P.O. Box 2008, Oak Ridge TN 37831-6164
Clayton G. Webster
Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6164, Oak Ridge, Tennessee 37831-6164, USA

ABSTRACT

We develop a projection-based dimension reduction approach for partial differential equations with high-dimensional stochastic coefficients. This technique uses samples of the gradient of the quantity of interest (QoI) to partition the uncertainty domain into "active" and "passive" subspaces. The passive subspace is characterized by near-constant behavior of the quantity of interest, while the active subspace contains the most important dynamics of the stochastic system. We also present a procedure to project the model onto the low-dimensional active subspace that enables the resulting approximation to be solved using conventional techniques. Unlike the classical Karhunen-Loeve expansion, the advantage of this approach is that it is applicable to fully nonlinear problems and does not require any assumptions on the correlation between the random inputs. This work also provides a rigorous convergence analysis of the quantity of interest and demonstrates: at least linear convergence with respect to the number of samples. It also shows that the convergence rate is independent of the number of input random variables. Thus, applied to a reducible problem, our approach can approximate the statistics of the QoI to within desired error tolerance at a cost that is orders of magnitude lower than standard Monte Carlo. Finally, several numerical examples demonstrate the feasibility of our approach and are used to illustrate the theoretical results. In particular, we validate our convergence estimates through the application of this approach to a reactor criticality problem with a large number of random cross-section parameters.


Articles with similar content:

ITERATIVE METHODS FOR SCALABLE UNCERTAINTY QUANTIFICATION IN COMPLEX NETWORKS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Tuhin Sahai, Amit Surana, Andrzej Banaszuk
A MULTI-FIDELITY STOCHASTIC COLLOCATION METHOD FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 3
Maziar Raissi, Padmanabhan Seshaiyer
VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Yuming Ba, Na Ou, Lijian Jiang
AN ADAPTIVE MULTIFIDELITY PC-BASED ENSEMBLE KALMAN INVERSION FOR INVERSE PROBLEMS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Tao Zhou, Liang Yan
DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Bert J. Debusschere, Habib N. Najm, Peter Thornton, Cosmin Safta, Khachik Sargsyan, Daniel Ricciuto