图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际不确定性的量化期刊
影响因子: 4.911 5年影响因子: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN 打印: 2152-5080
ISSN 在线: 2152-5099

Open Access

国际不确定性的量化期刊

DOI: 10.1615/Int.J.UncertaintyQuantification.2015011166
pages 99-121

A NONSTATIONARY COVARIANCE FUNCTION MODEL FOR SPATIAL UNCERTAINTIES IN ELECTROSTATICALLY ACTUATED MICROSYSTEMS

Aravind Alwan
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801, USA
Narayana R. Aluru
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801, USA

ABSTRACT

This paper presents a data-driven method of estimating stochastic models that describe spatial uncertainties. Relating these uncertainties to the spatial statistics literature, we describe a general framework that can handle heterogeneous random processes by providing a parameterization for the nonstationary covariance function in terms of a transformation function and then estimating the unknown hyperparameters from data using Bayesian inference. The transformation function is specified as a displacement that transforms the coordinate space to a deformed configuration in which the covariance between points can be represented by a stationary model. This approach is then used to model spatial uncertainties in microelectromechanical actuators, where the ground plate is assumed to have a spatially varying profile. We estimate the stochastic model corresponding to the random surface using synthetic profilometric data that simulate multiple experimental measurements of ground plate surface roughness. We then demonstrate the effect of the uncertainty on the displacement of the actuator as well as on other parameters, such as the pull-in voltage. We show that the nonstationarity is essential when performing uncertainty quantification in electrostatic microactuators.


Articles with similar content:

The Research of the Asymptotic Properties of Nonparametric Classifiers Based on Depth Functions
Journal of Automation and Information Sciences, Vol.47, 2015, issue 8
A. V. Anisimov, Alexander A. Galkin
FORWARD AND BACKWARD UNCERTAINTY PROPAGATION FOR DISCONTINUOUS SYSTEM RESPONSE USING THE PADÉ-LEGENDRE METHOD
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 2
Tonkid Chantrasmi, Gianluca Iaccarino
ON THE SCATTERING OF SURFACE WAVES BY UNDERWATER OBSTACLES
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 4
T. M. Shcherbak, N. S. Gorodetska, V. I. Nikishov
COMPUTING GREEN'S FUNCTIONS FOR FLOW IN HETEROGENEOUS COMPOSITE MEDIA
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
David A. Barajas-Solano, Daniel M. Tartakovsky
A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
Ajay Jasra, Yan Zhou, Kengo Kamatani, Kody J.H. Law