图书馆订阅: Guest
流动显示和图像处理期刊

每年出版 4 

ISSN 打印: 1065-3090

ISSN 在线: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

SIMULATION OF VENTILATED TUNNEL FIRES USING FINE-BUBBLE MODELING TECHNIQUE

卷 17, 册 2, 2010, pp. 155-175
DOI: 10.1615/JFlowVisImageProc.v17.i2.60
Get accessGet access

摘要

The main objective of this work was to visualize the buoyancy-induced flow in a road tunnel model that is analogous to the thermally driven smoke flow in the case of a tunnel fire. In the beginning, the tunnel model was made of Plexiglas and a large water tank was built using tempered glass. A cathode was placed within the tunnel model so that fine hydrogen bubbles were released as a result of the electrolysis of water. The hydrogen bubbles rose and eventually left the tunnel model enabling the simulation of the fire source in the case of a tunnel fire. Pictures were then taken at different timings to capture the instantaneous development of the flow. After that, a waterproof water pump was used to produce the effect of force convection on the rising bubbles in the tunnel model to simulate ventilation of tunnel fires. For comparison, several computational simulations were performed. Two of the most critical issues to focus are the backlayering effect and the downstream smoke propagation speed due to factors such as the fire size, the ventilation speed, and the tunnel gradient. Numerical simulations were performed through the control volume approach using FDS. The turbulence model employed for computation was the Large Eddy Simulation (LES) based on Smogorinsky model.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain