图书馆订阅: Guest
Journal of Machine Learning for Modeling and Computing

每年出版 4 

ISSN 打印: 2689-3967

ISSN 在线: 2689-3975

Indexed in

A NOTE ON APPLICABILITY OF ARTIFICIAL INTELLIGENCE TO CONSTITUTIVE MODELING OF GEOMATERIALS

卷 1, 册 2, 2020, pp. 157-170
DOI: 10.1615/JMachLearnModelComput.2020036318
Get accessDownload

摘要

With the ever accelerating spread of artificial intelligence (AI) in virtually all disciplines of science and engineering, the geotechnical studies and practices have also adopted these approaches for exploring and modeling of complex problems whose thorough understanding often falls beyond the reach of analytical and even numerical methods. In the midst of the overwhelming appeal of AI during recent years, however, there remains some overlooked fundamental questions regarding the inherent ability of AI-based models to represent the constitutive behavior of materials in general, and geomaterials in particular. This brief communications explores, from a theoretical point of view, the question of if, and how, an AI-generated model can replace symbolic constitutive models for materials and what would be the future of theoretical constitutive modeling in the age of AI.

参考文献
  1. Agrawal, A. and Choudhary, A., Perspective: Materials Informatics and Big Data: Realization of the "Fourth Paradigm" of Science in Materials Science, Appl. Mater., vol. 4, no. 5, p. 053208,2016.

  2. Alwosheel, A., van Cranenburgh, S., and Chorus, C.G., Is Your Dataset Big Enough? Sample Size Requirements when Using Artificial Neural Networks for Discrete Choice Analysis, J. Choice Model, vol. 28, pp. 167-182,2018.

  3. Bock, F.E., Aydin, R.C., Cyron, C.J., Huber, N., Kalidindi, S.R., and Klusemann, B., A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics, Front. Mater-., vol. 6, p. 110,2019.

  4. Cohen, T. and Welling, M., Group Equivariant Convolutional Networks, Int. Conf. Machine Learning, pp. 2990-2999,2016.

  5. Darve, F., The Expression of Rheological Laws in Incremental Form and the Main Classes of Constitutive Equations, Geomaterials: Constitutive Equations and Modeling, Boca Raton, FL: CRC Press, pp. 139-164,1990.

  6. Dennett, D., Darwin's Strange Inversion of Reasoning, Proc. Nat. Acad. Sci. USA, vol. 106, no. 1, pp. 10061-10065,2009.

  7. Ellis, G., Yao, C., Zhao, R., and Penumadu, D., Stress-Strain Modeling of Sands Using Artificial Neural Networks, J. Geotech. Eng., vol. 121, no. 5, pp. 429-435,1995.

  8. Furukawa, T. and Yagawa, G., Implicit Constitutive Modeling for Viscoplasticity Using Neural Networks, Int. J. Numer. Methods Eng., vol. 43, no. 2, pp. 195-219,1998.

  9. Gao, W., A Comprehensive Review on Identification of the Geomaterial Constitutive Model Using the Computational Intelligence Method, Adv. Eng. Informatics, vol. 38, pp. 420-440, 2018.

  10. Ghaboussi, J., Garrett, J., Jr., and Wu, X., Knowledge-Based Modeling of Material Behavior with Neural Networks, J. Eng. Mech, vol. 117, no. 1, pp. 132-153,1991.

  11. Hartman, E.J., Keeler, J.D., and Kowalski, J.M., Layered Neural Networks with Gaussian Hidden Units as Universal Approximations, Neural Comput., vol. 2, no. 2, pp. 210-215,1990.

  12. Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M., Ali, M., Yang, Y., and Zhou, Y., Deep Learning Scaling Is Predictable, Empirically, 2017. arXiv:1712.00409.

  13. Hinton, G., Vinyals, O., and Dean, J., Distilling the Knowledge in a Neural Network, 2015. arXiv:1503.02531.

  14. Hornik, K., Stinchcombe, M., and White, H., Multilayer Feedforward Networks Are Universal Approximators, Neural Networks, vol. 2, no. 5, pp. 359-366,1989.

  15. Huang, D.Z., Xu, K., Farhat, C., and Darve, E., Learning Constitutive Relations from Indirect Observations Using Deep Neural Networks, J. Comput. Phys, p. 109491,2020.

  16. Lefik, M. and Schrefler, B., Artificial Neural Network as an Incremental Non-Linear Constitutive Model for a Finite Element Code, Comput. Methods Appl. Mech. Eng., vol. 192, nos. 28-30, pp. 3265-3283, 2003.

  17. Levins, R., The Strategy of Model Building in Population Biology, Am. Sci., vol. 54, no. 4, pp. 421-431, 1966.

  18. Lewis, C.T. and Belanger, C., The Generality of Scientific Models: A Measure Theoretic Approach, Synthese, vol. 192, no. 1,pp. 269-285,2015.

  19. Liang, G. and Chandrashekhara, K., Neural Network Based Constitutive Model for Elastomeric Foams, Eng. Struct., vol. 30, no. 7, pp. 2002-2011,2008.

  20. Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A.L., Urtasun, R., and Zemel, R., Graph Partition Neural Networks for Semi-Supervised Classification, 2018. arXiv:1803.06272.

  21. Ling, J., Jones, R., and Templeton, J., Machine Learning Strategies for Systems with Invariance Properties, J. Comput. Phys, vol. 318, pp. 22-35,2016.

  22. Liu, X., Tao, F., and Yu, W., A Neural Network Enhanced System for Learning Nonlinear Constitutive Law and Failure Initiation Criterion of Composites Using Indirectly Measurable Data, Composite Struct., vol. 252, p. 112658,2020.

  23. Masi, F., Stefanou, I., Vannucci, P., and Maffi-Berthier, V., Thermodynamics-Based Artificial Neural Networks for Constitutive Modeling, 2020. arXiv:2005.12183.

  24. Moayedi, H., Mosallanezhad, M., Rashid, A.S.A., Jusoh, W.A.W., andMuazu, M.A., A Systematic Review and Meta-Analysis of Artificial Neural Network Application in Geotechnical Engineering: Theory and Applications, Neural Comput. Appl., pp. 1-24,2018.

  25. Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., and Bessa, M., Deep Learning Predicts Path-Dependent Plasticity, Proc. Nat. Acad. Sci., vol. 116, no. 52, pp. 26414-26420,2019.

  26. Nicot, F. and Darve, F., Basic Features of Plastic Strains: From Micro-Mechanics to Incrementally Nonlinear Models, Int. J. Plasticity, vol. 23, no. 9, pp. 1555-1588,2007.

  27. Orzack, S.H., The Philosophy of Modeling or Does the Philosophy of Biology Have Any Use?, Philos. Transact. Roy. Soc. B: Biol. Sci., vol. 367, no. 1586, pp. 170-180,2012.

  28. Peng, G.C., Alber, M., Tepole, A.B., Cannon, W.R., De, S.,Dura-Bernal, S., Garikipati, K., Karniadakis, G., Lytton, W.W., and Perdikaris, P., Multiscale Modeling Meets Machine Learning: What Can We Learn?, Archives Comput. Methods Eng., pp. 1-21,2020.

  29. Pouragha, M. and Wan, R., p.-GM: A Purely Micromechanical Constitutive Model for Granular Materials, Mech. Mater, vol. 126, pp. 57-74,2018.

  30. Prokopenko, M. and Einav, I., Information Thermodynamics of Near-Equilibrium Computation, Phys. Rev. E, vol. 91, no. 6, p. 062143,2015.

  31. Reisch, G.A., Chaos, History, and Narrative, History Theory, vol. 30, no. 1, pp. 1-20,1991.

  32. Rudy, S.H., Brunton, S.L., Proctor, J.L., and Kutz, J.N., Data-Driven Discovery of Partial Differential Equations, Sci. Adv., vol. 3, no. 4, p. e1602614,2017.

  33. Sawyer, R.K., Interpreting and Understanding Simulations: The Philosophy of Social Simulation, Simulating Social Complexity, Berlin: Springer, pp. 273-289,2013.

  34. Settgast, C., Abendroth, M., and Kuna, M., Constitutive Modeling of Plastic Deformation Behavior of Open-Cell Foam Structures Using Neural Networks, Mech. Mater., vol. 131, pp. 1-10,2019.

  35. Shin, H. and Pande, G., On Self-Learning Finite Element Codes Based on Monitored Response of Structures, Comput. Geotech., vol. 27, no. 3, pp. 161-178,2000.

  36. Small, M., Walker, D.M., Tordesillas, A., and Tse, C.K., Characterizing Chaotic Dynamics from Simulations of Large Strain Behavior of a Granular Material under Biaxial Compression, Chaos Interdisc. J. Nonlinear Sci, vol. 23, no. 1, p. 013113,2013.

  37. Tartakovsky, A.M., Marrero, C.O., Perdikaris, P., Tartakovsky, G.D., and Barajas-Solano, D., Learning Parameters and Constitutive Relationships with Physics Informed Deep Neural Networks, 2018. arXiv: 1808.03398.

  38. Vasilyeva, M., Leung, W.T., Chung, E.T., Efendiev, Y., and Wheeler, M., Learning Macroscopic Parameters in Nonlinear Multiscale Simulations Using Nonlocal Multicontinua Upscaling Techniques, J. Comput. Phys., p. 109323,2020.

  39. Wang, K. and Sun, W., A Multiscale Multi-Permeability Poroplasticity Model Linked by Recursive Homogenizations and Deep Learning, Comput. Methods Appl. Mech. Eng., vol. 334, pp. 337-380,2018.

  40. Weisberg, M., Qualitative Theory and Chemical Explanation, Philos. Sci., vol. 71, no. 5, pp. 1071-1081, 2004.

  41. Worrall, D.E., Garbin, S.J., Turmukhambetov, D., and Brostow, G.J., Harmonic Networks: Deep Translation and Rotation Equivariance, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 5028-5037,2017.

  42. Xu, K., Huang, D.Z., and Darve, E., Learning Constitutive Relations Using Symmetric Positive Definite Neural Networks, 2020a. arXiv: 2004.00265.

  43. Xu, K., Tartakovsky, A.M., Burghardt, J., and Darve, E., Inverse Modeling of Viscoelasticity Materials Using Physics Constrained Learning, 2020b. arXiv: 2005.04384.

  44. Zhang, A. and Mohr, D., Using Neural Networks to Represent Von Mises Plasticity with Isotropic Hardening, Int. J. Plasticity, p. 102732,2020.

对本文的引用
  1. Yousefpour Negin, Pouragha Mehdi, Prediction of the post‐failure behavior of rocks: Combining artificial intelligence and acoustic emission sensing, International Journal for Numerical and Analytical Methods in Geomechanics, 46, 10, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain