图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
高温材料处理:国际期刊
ESCI SJR: 0.176 SNIP: 0.48 CiteScore™: 1.3

ISSN 打印: 1093-3611
ISSN 在线: 1940-4360

高温材料处理:国际期刊

DOI: 10.1615/HighTempMatProc.2016016824
pages 291-305

EXPERIMENTAL INVESTIGATION OF SURFACE HARDNESS AND DRY SLIDING WEAR BEHAVIOR OF AA7050/B4Cp

Ranjith Rajamanickam
Department of Mechanical Engineering, Sri Ranganathar Institute of Engineering and Technology, Coimbatore 641110, India
P. K. Giridharan
Department of Mechanical Engineering, Kumaraguru College of Technology, Coimbatore — 641049, Tamil Nadu, India

ABSTRACT

In this work, AA7050 aluminum alloy reinforced with B4C particles of average particle size 25 µm is examined. The composites are invented by varying the weight percentage of B4C particles in the liquid stir casting route. K2TiF6 is added as a flux to overcome the wetting problem between B4C and molten aluminum alloy. The influence of reinforcement, sliding velocity, sliding distance, and of applied load on the wear rate is studied using a pin-on-a disc equipment in experiments. Optical, scanning electron microscopy, and EDX analysis are performed to characterize the samples. The influence of high-temperature spark produced during electric discharge machining on composite materials was analyzed. The Rockwell hardness tests were compared on as cast worn and electric discharge-machined surfaces. The hardness of the composites increases, whereas the coefficient of friction decreases with addition of B4Cp. The hardness value of a worn surface was higher than as cast composites in all cases due to the presence of a ferrous metal, with its presence being confirmed by energy dispersive X-ray analysis. The hardness value of the electric discharge-machined surface of composites was lower than unreinforced aluminum alloy due to the increase in the gap distance. There is an improvement in wear resistance due to the forming of a tribo-rich mechanically mixed layer. The presence of iron and oxygen in the worn surface confirmed the MML and oxidation reaction. The B4C-reinforced composites show better wear resistance than a pure aluminum alloy.


Articles with similar content:

FORMATION OF HARD AND WEAR-RESISTANT NIOBIUM CARBIDE COATINGS ON HARD-ALLOY TOOLS BY A VACUUM–ARC METHOD
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.23, 2019, issue 2
Andrej K. Kuleshov, V. M. Anishchik, I. A. Sakovich, D. P. Rusalski, Alexander A. Malashevich, Vladimir V. Uglov, V. A. Firago
INFLUENCE OF MODIFYING ADDITIVES ON THE PHASE STABILITY AND RESISTANCE TO OXIDATION OF COATINGS BASED ON STABILIZED ZIRCONIUM DIOXIDE AND A CARBON−CARBON COMPOSITE MATERIAL
Nanoscience and Technology: An International Journal, Vol.7, 2016, issue 4
D. Yu. Sinitsyn, V. N. Anikin, S. A. Eremin, B. V. Ryabenko
COMBUSTION SYNTHESIS OF ADVANCED CERAMICS, INTERMETALLICS, AND COMPOSITES
International Journal of Energetic Materials and Chemical Propulsion, Vol.10, 2011, issue 5
Chun-Liang Yeh
INFLUENCE OF TITANIUM-COATED (B4C + SiC) PARTICLES ON ELECTRIC DISCHARGE MACHINING OF AA7050 HYBRID COMPOSITES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.20, 2016, issue 2
J. Devaraj, P. K. Giridharan, Ranjith Rajamanickam
VACUUM ARC DEPOSITED NANOSTRUCTURED Ti COATINGS
Progress in Plasma Processing of Materials, 2001, Vol.0, 2001, issue
N .F. Vershinin, B. B. Straumal, R. Dimitriou , W. Gust, E. Rabkin, R. Kroeger