图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
等离子医学
SJR: 0.198 SNIP: 0.183 CiteScore™: 0.57

ISSN 打印: 1947-5764
ISSN 在线: 1947-5772

等离子医学

DOI: 10.1615/PlasmaMed.2012006275
pages 265-277

Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase

Hiromasa Tanaka
Plasma Nanotechnology Research Center, Nagoya University; Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
Masaaki Mizuno
Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
Kenji Ishikawa
Plasma Nanotechnology Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Kae Nakamura
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
Hiroaki Kajiyama
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
Hiroyuki Kano
NU Eco-Engineering Co., Ltd., 1237-87 Umazutsumi, Kurozasa-cho, Miyoshi-shi, Nishikamo-gun, Aichi 470-0201, Japan
Fumitaka Kikkawa
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
Masaru Hori
Plasma Nanotechnology Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

ABSTRACT

Glioblastoma brain tumor cells and normal astrocytes were treated with plasma-activated medium (PAM). Cell proliferation assays showed that glioblastoma cells were selectively killed by PAM. PAM induced morphological changes consistent with apoptosis in glioblastoma cells and the cells decreased in size. We confirmed that those cells induced apoptosis using an apoptotic molecular marker, cleaved Caspase3/7. To elucidate the molecular mechanisms of PAM-mediated apoptosis in glioblastoma cells, we investigated the effects of survival signal transduction pathways. We found that PAM downregulated the expression of AKT kinase, a marker molecule in a survival signal transduction pathway. These results suggest that PAM may be a promising tool for therapy of glioblastoma brain tumors by downregulating the survival signals in cancers.


Articles with similar content:

Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells
Plasma Medicine, Vol.2, 2012, issue 4
Masaru Hori, Hiromasa Tanaka, Hiroaki Kajiyama, Shoichi Maruyama, Kenji Ishikawa, Masaaki Mizuno, Hiroyuki Kano, Fumi Utsumi, Kae Nakamura, Fumitaka Kikkawa
Silence of PTEN in Colorectal Cancer Cells Via siRNA Inhibits Cell Growth
Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 3
Xun-fei Yi, Yian-yan Xin, Qiu-tang Sang, Yu-ga Du
(−)-Epigallocatechin-3-gallate inhibits osteosarcoma cell invasiveness by inhibiting the MEK/ERK signaling pathway in human osteosarcoma cells
Journal of Environmental Pathology, Toxicology and Oncology, Vol.34, 2015, issue 1
Zhengshi Zhang, Yong Wang, Guoqing Tang, Hongbin Qian, Bin Chen, Ji Chen, Yong Chen, Xiang Chen
A Review of Molecular Events of Cadmium-Induced Carcinogenesis
Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 3
Chendil Damodaran, Joe Luevano
Molecular Mechanisms of Apoptosis in Prostate Cancer
Critical Reviews™ in Oncogenesis, Vol.13, 2007, issue 1
Petra I. Lorenzo, Fahri Saatcioglu, Yke J. Arnoldussen