图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
等离子医学
SJR: 0.278 SNIP: 0.183 CiteScore™: 0.57

ISSN 打印: 1947-5764
ISSN 在线: 1947-5772

等离子医学

DOI: 10.1615/PlasmaMed.2019028816
pages 403-409

Atmospheric Pressure Microwave Plasma Torch for Biomedical Applications

Ivan Tsonev
Faculty of Physics, Sofia University, 1164 Sofia, Bulgaria
Nikolai Atanasov
University of Telecommunications and Post, 1700 Sofia, Bulgaria
Gabriela Atanasova
University of Telecommunications and Post, 1700 Sofia, Bulgaria
Frantisek Krcma
Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
Todor Bogdanov
Medical Faculty, Medical University-Sofia, 1431 Sofia, Bulgaria

ABSTRACT

During the past decade, cold plasma sources have gained much attention regarding biomedical applications. The large spectrum of observed effects (programmed cell death, bacterial inactivation, wound healing, etc.) has encouraged scientists to create and use different plasma sources operating at atmospheric pressure. The preferred plasma device to this point has been dielectric barrier discharges. In this work, we present well-known surface-wave-sustained microwave discharge operating at 2.45 GHz. This atmospheric pressure plasma torch can sustain low gas temperature at relatively low gas flow and power output, which makes it suitable for working with different model biological systems. We see a strong relationship among microwave power, torch length, and gas temperature. Moreover, gas flow and tube specifications (inner diameter, wall thickness, and dielectric permittivity) vary temperature and length of discharge. The purpose of this work is to precisely determine the working conditions at which this plasma source can be used in direct contact with biological objects.

REFERENCES

  1. Graves DB. Low temperature plasma biomedicine: A tutorial review. Phys Plasmas. 2014;21:080901.

  2. Weltmann K-D, von Woedtke T. Plasma medicine: Current state of research and medical application. Plasma Phys Control Fusion. 2017;59:014031.

  3. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys Rep Rev Sec Phys Lett. 2016;630:1-84.

  4. Wei T, Kushner MJ. Long-term effects of multiply pulsed dielectric barrier discharges in air on thin water layers over tissue: Stationary and random streamers. J Phys D Appl Phys. 2015;48:494002.

  5. Babaeva NY, Kushner MJ. Dynamics of dielectric barrier discharges over wounded skin. IEEE Trans Plasma Sci. 2011;39:2964-5.

  6. Romero-Mangado J, Dey A, Diaz-Cartagena DC, Solis-Marcano NE, Lopez-Nieves M, Santiago-Garcia V, Nordlund D, Krishnamurthy S, Meyyappan M, Koehne JE, Gandhiraman, RP. Efficacy of atmospheric pressure dielectric barrier discharge for inactivating airborne pathogens. J Vac Sci Technol A. 2017;35:041101.

  7. Kuzminova A, Kretkova T, Kylian O, Hanus J, Khalakhan I, Prukner V, Dolezalova E, Simek M, Biederman H. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma inair. JPhysDApplPhys. 2017;50:135201.

  8. Xu Z, Shen J, Zhang Z, Ma J, Ma R, Zhao Y, Sun Q, Qian S, Zhang H, Ding L, Cheng C, Chu PK, Xia W. Inactivation effects of non-thermal atmospheric-pressure helium plasma jet on Staphylococcus aureus biofilms. Plasma Process Polym. 2015;12:827-35.

  9. Hensel K, Kucerova K, Tarabova B, Janda M, Machala Z, Sano K, Mihai CT, Ciorpac M, Gorgan LD, Jijie R, Pohoata V, Topala I. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases. 2015;10:029515.

  10. Guaitella O, Sobota A. The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface. JPhysDApplPhys. 2015;48:255202.

  11. Horvath G, Moravsky L, Krcma F, Matejcik S. Characterization of a low-cost kilohertz-driven plasma pen operated in Ar gas. IEEE Trans Plasma Sci. 2013;41:613-9.

  12. Benova E, Atanasova M, Bogdanov T, Marinova P, Krcma F, Mazankova V, Dostal L. Microwave plasma torch at water surface. Plasma Med. 2016;6:59-65.

  13. Marinova P, Benova E, Todorova Y, Topalova Y, Yotinov I, Atanasova M, Krcma F. Surface-wave-sustained plasma torch for water treatment. J Phys Conf Series. 2018;982:012009.

  14. Krcma F, Tsonev I, Smejkalova K, Truchla D, Kozakova Z, Zhekova M, Marinova P, Bogdanov T, Benova E. Microwave micro torch generated in argon based mixtures for biomedical applications. J Phys D Appl Phys. 2018;51:414001.

  15. Moisan M, Zakrzewski Z. Plasma sources based on the propagation of electromagnetic surface waves.JPhysD Appl Phys.l991;24:1025-48.

  16. Moisan M, Nowakowska H. Contribution of surface-wave (SW) sustained plasma columns to the modeling of RF and microwave discharges with new insight into some of their features. A survey of othertypes of SW discharges. Plasma Sources Sci Technol. 2018;27:073001.

  17. Bruggeman P, Schram DC, Kong MG, Leys C. Is the rotational temperature of OH(A-X) for discharges in and in contact with liquids a good diagnostic for determining the gas temperature? Plasma Process Polym. 2009;6:751.

  18. KramidaA, Ralchenko Yu, Reader J, NIST ASD Team 2018. NIST Atomic Spectra Database (ver. 5.5.3) [database on the Internet], Gaithersburg (MD): The National Institute of Standards and Technology. c2018 - [cited 2018 Mar 31]. Available from: https://physics.nist.gov/asd.

  19. Marinova P, Benova E, Todorova Y, Topalova Y, Yotinov I, Atanasova M, Krcma F. Surface-wave-sustained plasma torch for water treatment. J Phys Conf Series. 2018;982:012009. 10.1088/1742-6596/982/1/012009.