图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
等离子医学
SJR: 0.198 SNIP: 0.183 CiteScore™: 0.57

ISSN 打印: 1947-5764
ISSN 在线: 1947-5772

等离子医学

DOI: 10.1615/PlasmaMed.2018028261
pages 299-320

Understanding the Differences Between Antimicrobial and Cytotoxic Properties of Plasma Activated Liquids

Evanthia Tsoukou
Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland
Paula Bourke
Plasma Research Group, College of Science and Health, Dublin Insitute of Technology, Dublin 1, Ireland
Daniela Boehm
Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland

ABSTRACT

The aqueous environment plays an important role in the transmission of cold plasma effects to both prokaryotic and eukaryotic cells. The exposure of liquids to cold atmospheric plasma discharges results in the generation of secondary reactive species; specifically, hydrogen peroxide (H2O2) seems to be one of the most important amongst the reactive species contained in plasma activated liquids (PALs) in causing cytotoxicity. Detailed understanding of the effects of PALs on cells is essential to harness this new technology. Liquids acting as models for non-complex solutions were generated using a dielectric barrier discharge atmospheric cold plasma (DBD-ACP) system. The chemical characterization of the PAL included its pH and concentrations of hydrogen peroxide, nitrite, and nitrate. The antimicrobial effects of PALs on Gram-positive and Gram-negative bacteria were examined, and cytotoxicity assays were used to elucidate the cytotoxic properties of PALs. The research outcomes showed acidification of plasma activated nonbuffered solutions and differences in concentrations of hydrogen peroxide, nitrite, and nitrate. PALs with different compositions varied in their antibacterial activity and cytotoxic effects, indicating that different reactive species may be responsible for these inactivation processes. Our results suggest that antimicrobial and cytotoxic effects are distinct from each other, which may offer promising approaches for future targeted applications in medicine.


Articles with similar content:

Surface Microdischarge Plasma for Disinfection
Plasma Medicine, Vol.7, 2017, issue 2
Julia Luise Zimmermann, Tetsuji Shimizu, V. Lachner

Bactericidal Effect of a Dielectric Barrier Discharge Plasma Jet Generated in Laminar and Preturbulent Helium Flows
Plasma Medicine, Vol.7, 2017, issue 3
Anatoly A. Kudryavtsev, Alexander Astafiev, Valentin A. Spodobin, Oksana Rybalchenko, Olga Orlova, Mikhail Pinchuk, Olga Stepanova

Acidification and Nitrite/Nitrate Accumulation by Nonthermal Dielectric Barrier Discharge (DBD) Affect Human Dermal Fibroblasts
Plasma Medicine, Vol.5, 2015, issue 1
Sabrina Baldus, Paul C. Fuchs, Christian Oplander, Kiara Heuer, Christoph V. Suschek, Julian Balzer, Peter Awakowicz, Erhan Demir, Martin A. Hoffmanns

Inactivation of Consortiums of Microorganisms by Air Plasma Jet at Atmospheric Pressure
Plasma Medicine, Vol.7, 2017, issue 2
Aliaksandra V. Kazak, Leanid V. Simonchik, N. V. Dudchik, O. E. Nezhvinskaya, A. A. Kirillov

Apical Application of Nanosecond-Pulsed Dielectric Barrier Discharge Plasma Causes the Basolateral Release of Adenosine Triphosphate as a Damage-Associated Molecular Pattern from Polarized HaCaT Cells
Plasma Medicine, Vol.7, 2017, issue 2
Karl Siegert, Abraham Lin, Fred C. Krebs, Vandana Miller, Billy Truong