图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
多相流动科学与技术
SJR: 0.153 SNIP: 0.222 CiteScore™: 0.26

ISSN 打印: 0276-1459
ISSN 在线: 1943-6181

多相流动科学与技术

DOI: 10.1615/MultScienTechn.v22.i1.30
pages 33-55

EXPERIMENTAL INVESTIGATIONS ON THE CONDENSATION OF STEAM BUBBLES INJECTED INTO SUBCOOLED WATER AT 1 MPA

Dirk Lucas
Helmholtz-Zentrum Dresden-Rossendorf
M. Beyer
Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, 01314 Dresden
L. Szalinski
Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, 01314 Dresden

ABSTRACT

Bubble condensation plays an important role, e.g., in subcooled boiling or steam injection into pools. Since the condensation rate is proportional to the interfacial area density, bubble size distributions have to be considered in an adequate modeling of the condensation process. To develop and validate closure models for computational fluid dynamics codes, new experimental data are required. The effect of bubble sizes is clearly shown in experimental investigations done at the TOPFLOW facility of Forschungszentrum Dresden Rossendorf. Steam bubbles are injected into a subcooled upward pipe flow via orifices in the pipe wall located at different distances from the measuring plane. Injection orifices measuring 1 and 4 mm are used to vary the initial bubble size distribution. Variation of the distance between the location of the gas injection and the measuring plane allows investigation of the evolution of the flow along the pipe. Measurements are done using wire-mesh sensors and thermocouples. Condensation is clearly faster in the case of the injection via the smaller orifices, i.e., in case of smaller bubble sizes. Data on averaged void fraction, radial gas volume fraction profiles, profiles of the gas velocity, and bubble size distributions in dependency of the L/D ratio are presented in the paper.

REFERENCES

  1. Drew, D. A. and Lahey, Jr., R. T., Application of general constitutive principles to the derivation of multidimensional two-phase flow equation. DOI: 10.1016/0301-9322(79)90024-7

  2. Frank, T., Zwart, P., Krepper, E., Prasser, H.-M., and Lucas, D., Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes. DOI: 10.1016/j.nucengdes.2007.02.056

  3. Ishii, M. and Mishima, K., Two fluid model and hydrodynamic constitutive relations. DOI: 10.1016/0029-5493(84)90207-3

  4. Krepper, E., Lucas, D., and Prasser, H.-M., On the modelling of bubbly flow in vertical pipes. DOI: 10.1016/j.nucengdes.2004.09.006

  5. Krepper, E., Lucas, D., Frank, T., Prasser, H.-M., and Zwart, P., The inhomogeneous MUSIG model for the simulation of polydispersed flows. DOI: 10.1016/j.nucengdes.2008.01.004

  6. Lucas, D., Krepper, E., and Prasser, H.-M., Prediction of radial gas profiles in vertical pipe flow on the basis of the bubble size distribution. DOI: 10.1016/S1290-0729(00)01211-4

  7. Lucas, D., Krepper, E., and Prasser, H.-M., Development of co-current air-water flow in a vertical pipe. DOI: 10.1016/j.ijmultiphaseflow.2005.07.004

  8. Lucas, D., Krepper, E., and Prasser, H.-M., Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-disperse flows. DOI: 10.1016/j.ces.2007.04.035

  9. Lucas, D. and Prasser, H.-M., Steam bubble condensation in sub-cooled water in the case of co-current vertical pipe flow. DOI: 10.1016/j.nucengdes.2006.09.004

  10. Lucas, D., Beyer, M., Kussin, J., and Schütz, P., Benchmark database on the evolution of two-phase flows in a vertical pipe. DOI: 10.1016/j.nucengdes.2009.11.010

  11. Lucas, D., Beyer, M., Frank, T., Zwart, P., and Burns, A., Condensation of steam bubbles injected into sub-cooled water.

  12. Prasser, H.-M., Böttger, A., and Zschau, J., A new electrode-mesh tomograph for gas/liquid flows. DOI: 10.1016/S0955-5986(98)00015-6

  13. Prasser, H.-M., Scholz, D., and Zippe, C., Bubble size measurement using wire-mesh sensors. DOI: 10.1016/S0955-5986(00)00046-7

  14. Prasser, H.-M., Beyer, M., Carl, H., Manera, A., Pietruske, H., Schütz, P., and Weiß, F.-P., The multipurpose thermal-hydraulic test facility TOPFLOW: An overview on experimental capabilities, instrumentation and results.

  15. Prasser, H.-M., Beyer, M., Carl, H., Gregor, S., Lucas, D., Pietruske, H., Schütz, P., and Weiss, F.-P., Evolution of the structure of a gas-liquid two-phase flow in a large vertical pipe. DOI: 10.1016/j.nucengdes.2007.02.018

  16. Schaffrath, A., Krüssenberg, A.-K., Weiß, F.-P., Hicken, E.-F., Beyer, M., Carl, H., Prasser, H.-M., Schuster, J., Schütz, P., and Tamme, M., TOPFLOW - A new multipurpose thermalhydraulic test facility for the investigation of steady state and transient two-phase flow phenomena.

  17. Tomiyama, A., Struggle with computational bubble dynamics.


Articles with similar content:

MEAN BEHAVIOR OF A COAXIAL AIR-BLAST ATOMIZED SPRAY IN A CO-FLOWING AIR STREAM
Atomization and Sprays, Vol.6, 1996, issue 4
Jean-Jacques Karl, Daniel Huilier, Henri Burnage
HEAT TRANSFER IN TURBULENT FLUIDIZED BEDS
International Heat Transfer Conference 8, Vol.5, 1986, issue
P. K. Haider , Prabir Basu, P. K. Nag
GAS-PHASE PROBABILITY DISTRIBUTION IN LIQUID CROSS-FLOW
Multiphase Science and Technology, Vol.26, 2014, issue 3
Miguel A. Balzan, Brian A. Fleck
Bubble-tracking modeling of subcooled nucleate boiling in a vertical annulus
International Heat Transfer Conference 12, Vol.41, 2002, issue
Goon Cherl Park, Ivo Kljenak, Borut Mavko, Taeho Lee
NUMERICAL ANALYSIS AND EXPERIMENTAL VALIDATION OF BUBBLE SIZE DISTRIBUTIONS IN TWO-PHASE BUBBLE COLUMN REACTORS
Multiphase Science and Technology, Vol.17, 2005, issue 1-2
H. Luo, F. Bertola, H. F. Svendsen, K. W. Hjarbo, C. A. Dorao, L. Hagesaether, Marco Vanni, J. Grundseth, Giancarlo Baldi, H. A. Jakobsen