图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v4.i1.40
pages 29-46

Multiscale Total Lagrangian Formulation for Modeling Dislocation-Induced Plastic Deformation in Polycrystalline Materials

Xinwei Zhang
Civil & Environmental Engineering Department, University of California, Los Angeles (UCLA), 5731G Boelter Hall, Los Angeles, CA 90095, USA
Shafigh Mehraeen
Civil & Environmental Engineering Department, University of California, Los Angeles (UCLA), 5731G Boelter Hall, Los Angeles, CA 90095, USA
Jiun-Shyan Chen
Civil & Environmental Engineering Department, University of California, Los Angeles (UCLA), 5731G Boelter Hall, Los Angeles, CA 90095, USA
Nasr M. Ghoniem
Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA

ABSTRACT

Multiscale mathematical and computational formulation for coupling mesoscale dislocation mechanics and macroscale continuum mechanics for prediction of plastic deformation in polycrystalline materials is presented. In this development a total Lagrangian multiscale variational formulation for materials subjected to geometric and material nonlinearities is first introduced. By performing scale decomposition of kinematic variables and the corresponding dislocation kinematic variables, several leading-order equations, including a scale-coupling equation, a mesoscale dislocation evolution equation, and a homogenized macroscale equilibrium equation, are obtained. By further employing the Orowan relation, a mesoscopic plastic strain is obtained from dislocation velocity and its distribution, and a homogenized elastoplastic stress-strain relation for macroscale is constructed. The macroscale, mesoscale, and scale-coupling equations are solved interactively at each macroscopic load increment, and information on the two scales is passed through the macroscale integration points. In this multiscale approach the phenomenological hardening rule and flow rule in the classical plasticity theory are avoided, and they are replaced by a homogenized mesoscale material response characterized by dislocation evolution and their interactions.


Articles with similar content:

Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova
Softening Gradient Plasticity: Analytical Study of Localization under Nonuniform Stress
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Jan Zeman, Milan Jirasek, Jaroslav Vondrejc
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
MODELING THE EFFECTIVE DYNAMIC PROPERTIES OF FIBER COMPOSITES MODIFIED ACROSS LENGTH SCALES
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 2
G. I. Kriven, Sergey A. Lurie, Dmitriy B. Volkov-Bogorodsky
MULTILEVEL MODELS OF POLYCRYSTALLINE METALS: COMPARISON OF RELATIONS DESCRIBING THE CRYSTALLITE LATTICE ROTATIONS
Nanoscience and Technology: An International Journal, Vol.10, 2019, issue 1
Alexey I. Shveykin, Peter V. Trusov