图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v2.i1.20
12 pages

Green's Function and Eshelby's Fields in Couple-Stress Elasticity

Quanshui Zheng
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Z.-H. Zhao
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

ABSTRACT

Conventional micromechanical schemes for estimating effective properties of composite materials in the matrix-inclusion type have no dependence upon absolute sizes of inclusions. However, there has been more and more experimental evidence that severe strain-gradient may result in remarkable size effects to mechanical behavior of materials. The strain field of an unbounded isotropic homogeneous elastic body containing a spherical inclusion subject to a uniform farfield stress may have very sharp strain-gradient within a surrounding matrix region of the inclusion, whenever the inclusion size would be very small. Consequently, the strain field variation in the whole matrix region of a composite with highly concentrated very small inclusions would be violent. Therefore, it is necessary to develop a micromechanical scheme in which the matrix phase is treated as a nonconventional material, and both the inclusion phases and the composite itself as an effective medium are treated as conventional materials. Such a scheme has been reported, with interesting applications. This scheme is based on the results of Green's functions and Eshelby's fields in couple-stress elastic theory. A thorough derivation of these results is given in the present paper. The main reason for choosing the couple-stress theory among various nonconventional theories of elasticity is that it contains the least number of material constants, in order to establish a simplest possible micromechanical scheme for taking account of absolute sizes.


Articles with similar content:

VARIATIONAL INEQUALITIES FOR HETEROGENEOUS MICROSTRUCTURES BASED ON COUPLE-STRESS THEORY
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Sonjoy Das, Gary F. Dargush, Ali R. Hadjesfandiari, Sourish Chakravarty
THE INFLUENCE OF THE STRAIN RATE ON THE STRENGTH OF THE COATING-SUBSTRATE COMPOSITION. NUMERICAL MODELING
Nanoscience and Technology: An International Journal, Vol.2, 2011, issue 3
V. A. Romanova, E. A. Schwab, Ruslan R. Balokhonov
MODELING THE STRESS−STRAIN BEHAVIOR OF SHUNGITE PARTICLE-FILLED RUBBERS
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 4
A. V. Babaytsev, Yu. V. Kornev, N. A. Semenov
Assessment of the Significance of Nonlinear Terms in the Simulation of Flexible Multibody Systems
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 2&3
M. Pascal, Y. C. Mbono Samba
Computational Evaluation of Strain Gradient Elasticity Constants
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
N. A. Fleck, R. H. J. Peerlings