图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Concrete as a Hierarchical Structural Composite Material

卷 8, 册 6, 2010, pp. 585-595
DOI: 10.1615/IntJMultCompEng.v8.i6.30
Get accessGet access

摘要

A multiscale modeling methodology that relates the nanostructure of concrete to its micro and macro properties is presented. This work attempts to establish a framework for understanding the relations among chemical composition, microstructure morphology, and the macroscale mechanical properties of concrete constituents. The simulation is based on four levels of a hierarchal structural model, starting from the molecular dynamics simulation of hydrated cement solid nanoparticles (e.g., C{S{H, and calcium hydroxide), all the way up to concrete. To validate the theoretical model, a nondestructive testing technique, resonant ultrasound spectroscopy (RUS), is used to measure the elastic constants of hydrated cement paste. The results showed good agreement between theoretically predicted and experimentally measured properties.

参考文献
  1. Aboudi, J., Micromechanical analysis of composites by the method of cells. DOI: 10.1115/1.3152428

  2. Aboudi, J., Micromechanical analysis of composites by the method of cells—Update. DOI: 10.1115/1.3101981

  3. Abudi, J., Mechanics of Composite Materials—A Unified Micromechanical Approach.

  4. Accelrys, Inc., Materials Studio 4.2 [software].

  5. Aligizaki, K. K., Pore structure of cement-based materials: Testing interpretation and requirements (modern concrete technology).

  6. Alkateb, H., Alzebdeh, K. I., and Al-Ostaz, A., Stochastic models for predicting the strength and crack propagation of random composites.

  7. Bentz, D. P., Garboczi, E. J., Jennings, H. M., and Quenard, D. A., Multi-scale digital-image-based modeling of cement-based materials. DOI: 10.1557/PROC-370-33

  8. Bernard, O., Ulm, F.-J., and Lemarchand, E., Multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. DOI: 10.1016/S0008-8846(03)00039-5

  9. Constantinides, G. and Ulm, F.-J., The nanogranular nature of C-S-H. DOI: 10.1016/j.jmps.2006.06.003

  10. Dormieux, L. and Ulm, F.-J., Applied Micromechanics of Porous Materials. DOI: 10.1007/3-211-38046-9

  11. Dormieux, L., Kondo, D., and Ulm, F.-J., Microporomechanics. DOI: 10.1002/0470032006

  12. Feldman, R. F. and Sereda, P. J., A new model of hydrated cement and its practical implications.

  13. Feng, L. and Christian, M., Micromechanics model for the effective elastic properties of hardened cement pastes.

  14. Fish, J. and Shek, K., Multiscale analysis of composite materials and structures. DOI: 10.1016/S0266-3538(00)00048-8

  15. Fish, J. and Yu, Q., Computational mechanics of fatigue and life predictions for composite materials and structures. DOI: 10.1016/S0045-7825(02)00401-2

  16. Fish, J., Wu, W., and Yuan, Z., Eigen deformation-based homogenization of concrete.

  17. Gates, T. S., Odegard, G. M., Frankland, S. J. V., and Clancy, T. C., Computational materials: Multi-scale modeling and simulation of nanostructured materials. DOI: 10.1016/j.compscitech.2005.06.009

  18. Haecker, C.-J., Garboczi, E. J., Bullard, J. W., Bohn, R. B., Sun, Z., Shah, S. P., and Voigt, T., Modeling the linear elastic properties of Portland cement paste. DOI: 10.1016/j.cemconres.2005.05.001

  19. Hashin, Z., The elastic moduli of heterogeneous materials. DOI: 10.1115/1.3636446

  20. Helmuth, R. A. and Turk, D. H., Elastic moduli of hardened Portland cement and tricalci silicate paste: Effect of porosity.

  21. Jasiuk, I. M., Trabecular bone as a hierarchical material: Elasticity and fracture.

  22. Jennings, H. M., A model for the microstructure of calcium silicate hydrate in cement paste. DOI: 10.1016/S0008-8846(99)00209-4

  23. Jennings, H. M., Colloid model of C-S-H and implications to the problem of creep and shrinkage. DOI: 10.1007/BF02481627

  24. Jennings, H. M. and Tennis, P. D., Model for the developing microstructure in Portland cement pastes. DOI: 10.1111/j.1151-2916.1994.tb04565.x

  25. Kerner, E. H., The elastic and thermo-elastic properties of composite media. DOI: 10.1088/0370-1301/69/8/305

  26. Knudsen, F. P., Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. DOI: 10.1111/j.1151-2916.1959.tb13596.x

  27. Leisure, R. G. and Willis, F. A., Resonant ultrasound spectroscopy. DOI: 10.1088/0953-8984/9/28/002

  28. Li, A., Li, R., and Fish, J., Generalized mathematical homogenization: From theory to practice. DOI: 10.1016/j.cma.2007.12.002

  29. Maynard, J., Resonant ultrasound spectroscopy. DOI: 10.1063/1.881483

  30. Mehta, P. K., Concrete, Structure, Properties, and Msaterials.

  31. Migliori, A., Sarrao, J. L., Visscher,W. M., Bell, T. M., Lei, M., Fisk, Z., and Leisure, R. G., Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. DOI: 10.1016/0921-4526(93)90048-B

  32. Migliori, A., Visscher, W. M., Brown, S. E., Fisk, Z., Cheong, S.-W., Alten, B., Ahrens, E. T., Kubat-Martin, K. A., Maynard, J. D., Huang, Y., Kirk, D. R., Gillis, K. A., Kim, H. K., and Chan, M. H. W., Elastic constants and specific-heat measurements on single crystals of La2CuO4. DOI: 10.1103/PhysRevB.41.2098

  33. NASA John H. Glenn Research Center, MAC/GMC computer software.

  34. Ostoja-Starzewski, M., Lattice models in micromechanics. DOI: 10.1115/1.1432990

  35. Powers, T. C., Physical properties of cement paste.

  36. Powers, T. C. and Brownyard, T. L., Studies of the physical properties of hardened Portland cement paste.

  37. Taylor, H. F. W., Proposed structure for calcium silicate hydrate gel. DOI: 10.1111/j.1151-2916.1986.tb07446.x

  38. Taylor, H. F. W., A method for predicting alkali ion concentration in cement pore solutions. DOI: 10.1680/adcr.1987.1.1.5

  39. Taylor, H. F. W., Nanostructure of C-S-H: Current status. DOI: 10.1016/1065-7355(93)90006-A

  40. Tennis, P. D. and Jennings, H. M., A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. DOI: 10.1016/S0008-8846(00)00257-X

  41. Ulm, F.-J., Constantinides, G., and Heukamp, F. H., Is concrete a poromechanics material?—A multiscale investigation of poroelastic properties. DOI: 10.1007/BF02481626

  42. Velez, K., Maximilien, S., Damidot, D., Fantozzi, G., and Sorrebtino, F., Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. DOI: 10.1016/S0008-8846(00)00505-6

  43. Wu, W., Al-Ostaz, A., Cheng, A. H.-D., and Song, C. R., A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement. DOI: 10.1016/j.compositesb.2010.06.005

  44. Wu, W., Al-Ostaz, A., Gladden, J., Cheng, A., and Li, G., Measurement of mechanical properties of hydtated cement paste using resonant ultrasound spectroscopy. DOI: 10.1520/JAI102657

  45. Yoshimura, H. N., Molisani, A. L., and Narita, N. E., Porosity dependence of elastic constants in aluminum nitride ceramics. DOI: 10.1590/S1516-14392007000200006

  46. Yuan, Z. and Fish, J., Hierarchical model reduction at multiple scales. DOI: 10.1002/nme.2554

对本文的引用
  1. Rivas Murillo John S, Mohamed Ahmed, Hodo Wayne, Mohan Ram V, Rajendran A, Valisetty R, Computational modeling of shear deformation and failure of nanoscale hydrated calcium silicate hydrate in cement paste: Calcium silicate hydrate Jennite, International Journal of Damage Mechanics, 25, 1, 2016. Crossref

  2. Fan Ding, Yang Shangtong, Mechanical properties of C-S-H globules and interfaces by molecular dynamics simulation, Construction and Building Materials, 176, 2018. Crossref

  3. Denisiewicz Arkadiusz, Kuczma Mieczysław, Numerical Elastic-Plastic Model of RPC in the Plane Stress State, in Continuous Media with Microstructure 2, 2016. Crossref

  4. Zhou Jikai, Liang Yuanzhi, Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation, Materials, 12, 17, 2019. Crossref

  5. Sadowski Łukasz, Stefaniuk Damian, Żak Andrzej, Krakowiak Konrad J., Micromechanical properties within the interphase between heterogeneous layers made of cementitious composites, Construction and Building Materials, 215, 2019. Crossref

  6. Wang Xianfeng, Xie Wei, Li Taoran, Ren Jun, Zhu Jihua, Han Ningxu, Xing Feng, Molecular Dynamics Study on Mechanical Properties of Interface between Urea-Formaldehyde Resin and Calcium-Silicate-Hydrates, Materials, 13, 18, 2020. Crossref

  7. Liang Yuanzhi, Mechanical and fracture properties of calcium silicate hydrate and calcium hydroxide composite from reactive molecular dynamics simulations, Chemical Physics Letters, 761, 2020. Crossref

  8. Krishnya Siventhirarajah, Yoda Yuya, Elakneswaran Yogarajah, A two-stage model for the prediction of mechanical properties of cement paste, Cement and Concrete Composites, 115, 2021. Crossref

  9. Molecular Material Modeling of Cement Paste Composite in Shock Loading, ACI Materials Journal, 117, 6, 2020. Crossref

  10. Zhou Jikai, Liang Yuanzhi, Reactive molecular dynamics simulation on the structure characteristics and tensile properties of calcium silicate hydrate at various temperatures and strain rates, Molecular Simulation, 46, 15, 2020. Crossref

  11. Zhou Jikai, Huang Junkai, Jin Long, Nano–micro modelling of mechanical properties of cement paste based on molecular dynamics, Advances in Cement Research, 28, 2, 2016. Crossref

  12. Wu Huite, Pan Jianwen, Wang Jinting, Molecular dynamics simulation study on dynamic mechanical properties of C-S-H with diverse Ca/Si ratios, Materials Today Communications, 31, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain