图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v3.i2.60
pages 199-225

Multiscale Modeling Of Polymer Composite Properties

Yuri G. Yanovsky
Institute of Applied Mechanics, Russian Academy of Sciences, 7 Leningradsky Ave., Moscow, 125040, Russia

ABSTRACT

Polymer composites are heterogeneous viscoelastic media. The ascertainment of the quantitative relations between the microstructure and macromechanical properties of these materials is a very important scientific problem. Some distinctive computer technologies, which lead to multiscale computational experiments and investigations of peculiarities of micromechanical behavior of heterogeneous composite media taking into consideration atomic-molecular formations, have been discussed. These approximations are important elements in the nanotechnological problem of construction of new perspective materials. We consider the results of calculation by the Monte Carlo approach as a perspective method for the description of the important features of atomic and molecular texture and energetics of heterogeneous polymer media, namely, different flexible-chain molecules and nanoclusters of technical carbon chemically terminated with different substances. The representative element of this structure keeps up to 1.5 × 106 atoms. The parallel technologies of calculations and supercomputers have been used. Estimation of structural peculiarities and energies of interaction of systems consisted of polymeric macromolecules and nanoparticles of fillers, variation of superficial chemical properties of fillers, and evaluation of water presence inside the media, all of which are ideated as highly useful for the understanding of the macromechanics of composites. The quantum-mechanical approach is discussed as the method for solution of the foremost problems of micromechanics of reinforced polymer (rubber) composites, namely, (i) an investigation of the interaction of soot model particles with nonterminated and H-terminated surfaces, with segments of polymer chain with different chemical structures, and consideration of the impact of a chemical nature of the polymer and chemical nature of surface soot modification on the enthalpy of binding and the force of micromolecular shifting (friction); (ii) an investigation of the interaction of soot particles without an interface layer between them, and evaluation of the influence of chemical modification of the soot surface on the binding enthalpy and the shifting force of these particles (nonterminated and terminated by H, OH, and COO surface groups); and (iii) an investigation of the interaction of soot particles with an interparticle layer of polymer and water between soot particles, and evaluation of the chemical nature of the particles that are adsorbed at the interface of soot particles on their binding enthalpy and force of microscopic friction (nonterminated and terminated by H soot surfaces). Calculations were done in a parallel mode using supercomputer MVC-1000M (Moscow). Optimization of the viscoelastic behavior of composite media such as rubbers leads to the procedure of identification. Validity of the effect of reinforcement on the basis of the analysis of relaxation properties of materials seems very promising.


Articles with similar content:

ELASTOPLASTIC DEFORMATION OF DISPERSE COMPOSITES WITH A RAREFIED RANDOM STRUCTURE
Composites: Mechanics, Computations, Applications: An International Journal, Vol.2, 2011, issue 2
A. A. Tashkinov, N. V. Mikhailova
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
A VARIANT OF DESCRIBING ADHESION INTERACTION IN THE PROBE–SAMPLE SYSTEM OF AN ATOMIC-FORCE MICROSCOPE
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 4
Vladimir S. Shorkin, L. Yu. Frolenkova, V. Yu. Presnetsova, S. N. Romashin, S. I. Yakushina
Multiscale Dislocation Dynamics Plasticity
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
S. M. A. Khan, H. M. Zbib, G. Karami, M. Shehadeh
A Numerical Investigation of Structure-Property Relations in Fiber Composite Materials
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Patrizia Trovalusci, V. Sansalone