图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v8.i4.50
pages 411-422

Coarse Implicit Time Integration of a Cellular Scale Particle Model for Plant Tissue Deformation

P. Ghysels
K.U. Leuven, Department of Computer Science, Celestijnenlaan 200A, bus 2402, B-3001 Heverlee, Belgium
G. Samaey
K.U. Leuven, Department of Computer Science, Celestijnenlaan 200A, bus 2402, B-3001 Heverlee, Belgium
P. Van Liedekerke
K.U. Leuven, Department of Biosystems, Kasteelpark Arenberg 30, bus 2456, B-3001 Heverlee, Belgium
E. Tijskens
K.U. Leuven, Department of Biosystems, Kasteelpark Arenberg 30, bus 2456, B-3001 Heverlee, Belgium
H. Ramon
K.U. Leuven, Department of Biosystems, Kasteelpark Arenberg 30, bus 2456, B-3001 Heverlee, Belgium
D. Roose
K.U. Leuven, Department of Computer Science, Celestijnenlaan 200A, bus 2402, B-3001 Heverlee, Belgium

ABSTRACT

We describe a multiscale method to simulate the deformation of plant tissue. At the cellular scale we use a combination of smoothed particle hydrodynamics and discrete elements to model the geometrical structure and basic properties of individual plant cells. At the coarse level, the material is described by the standard continuum approach without explicitly constructing a constitutive equation. Instead, the coarse scale finite element model uses simulations with the fine (cellular) scale model in small subdomains, called representative volume elements (RVEs), to determine the necessary coarse scale variables, such as stress and the elasticity and viscosity tensors. We present an implicit time integration scheme for the coarse finite element model, allowing much larger time steps than possible with explicit methods. Computation of the Cauchy stress from an RVE is straightforward by volume averaging over the RVE. In this work, we use forward finite differencing of the objective Truesdell stress rate to estimate both the fourth-order elasticity and viscosity tensors. These tensors are then used to construct the coarse scale stiffness and damping matrices required for implicit integration.

REFERENCES

  1. Bangerth, W., Hartmann, R., and Kanschat, G., Deal II A general-purpose object-oriented finite element library. DOI: 10.1145/1268776.1268779

  2. Bonet, J. and Lok, T. S. L., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. DOI: 10.1016/S0045-7825(99)00051-1

  3. Bonet, J. and Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis.

  4. Chen, W. and Fish, J., A mathematical homogenization perspective of virial stress. DOI: 10.1002/nme.1622

  5. Conn, A. R., Gould, N. I. M., and Toint, P. L., Trust-region methods. DOI: 10.1137/1.9780898719857

  6. Cundall, P. A. and Strack, O. D. L., A discrete numerical model for granular assemblies. DOI: 10.1680/geot.1979.29.1.47

  7. Curtis, A. R., Powell, M. J. D., and Reid, J. K., On the estimation of sparse Jacobian matrices. DOI: 10.1093/imamat/13.1.117

  8. Feyel, F. and Chaboche, J. L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. DOI: 10.1016/S0045-7825(99)00224-8

  9. Fish, J., Chen, W., and Li, R., Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions. DOI: 10.1016/j.cma.2006.08.001

  10. Ghysels, P., Samaey, G., Tijskens, E., Van Liedekerke, P., Ramon, H., and Roose, D., Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics. DOI: 10.1088/1478-3975/6/1/016009

  11. Ghysels, P., Samaey, G., Van Liedekerke, P., Tijskens, E., Ramon, H., and Roose, D., Multiscale modeling of viscoelastic plant tissue. DOI: 10.1615/IntJMultCompEng.v8.i4.30

  12. Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems. DOI: 10.1007/978-3-540-78862-1

  13. Hairer, E., Nørsett, S. P., and Wanner, G., Solving ordinary differential equations II: Stiff and Differential-Algebraic Poblems. DOI: 10.1007/978-3-642-05221-7

  14. Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., and Woodward, C. S., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. DOI: 10.1145/1089014.1089020

  15. Kelley, C. T., Solving Nonlinear Equations with Newtons Method, Fundamentals of Algorithms. DOI: 10.1137/1.9780898718898

  16. Kelley, C. T. and Keyes, D. E., Convergence analysis of pseudo-transient continuation. DOI: 10.1137/S0036142996304796

  17. Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, F. P. T., An approach to micro–macro modeling of heterogeneous materials. DOI: 10.1007/s004660000212

  18. Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method.

  19. Malkus, D. S. and Hughes, T. J. R., Mixed finite element methods–Reduced and selective integration techniques–A unification of concepts. DOI: 10.1016/0045-7825(78)90005-1

  20. Miehe, C., Numerical computation of algorithmic (consistent) tangent moduli in largestrain computational inelasticity. DOI: 10.1016/0045-7825(96)01019-5

  21. Miehe, C., Schroder, J., and Schotte, J., Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. DOI: 10.1016/S0045-7825(98)00218-7

  22. Monaghan, J. J., Smoothed particle hydrodynamics. DOI: 10.1146/annurev.aa.30.090192.002551

  23. Morris, J. P., Fox, P. J., and Zhu, Y., Modeling low Reynolds number incompressible flows using SPH. DOI: 10.1006/jcph.1997.5776

  24. Simo, J. C. and Hughes, T. J. R., Computational Inelasticity. DOI: 10.1007/b98904

  25. Van Liedekerke, P., Tijskens, E., Ramon, H., Ghysels, P., Samaey, G., and Roose, D., A particle based model to simulate plant cells dynamics.

  26. Zhou, M., A new look at the atomic level virial stress: On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127