图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

GENERAL FORMULATION OF A POROMECHANICAL COHESIVE SURFACE ELEMENT WITH ELASTOPLASTICITY FOR MODELING INTERFACES IN FLUID-SATURATED GEOMATERIALS

卷 14, 册 4, 2016, pp. 323-347
DOI: 10.1615/IntJMultCompEng.2016018962
Get accessGet access

摘要

The paper formulates and implements a fluid-saturated poromechanical cohesive surface element (CSE) based upon biphasic (solid-fluid) mixture theory at small strain, with strong discontinuity kinematics. The goal is to be able to introduce strong discontinuity kinematics directly into the coupled variational form in order to derive the balance of linear momentum and mass within the discontinuity domain. This method is compared to approaches that derive the additional terms directly from underlying physical considerations. This approach is useful when extending the method to finite strain, partially saturated, and heated conditions. The Strong form (coupled partial differential equations) is presented, upon which Weak and Galerkin forms are formulated using different representations of the fields outside and inside the discontinuity domain. A mixed Q6P4 six-noded CSE is implemented within the coupled nonlinear Finite Element (FE) equations, along with a mixed Q9P4 biquadratic/bilinear quadrilateral for the surrounding bulk porous continuum. Numerical examples demonstrate the features of the CSE for fluid-saturated geomaterials.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain