图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v9.i4.30
pages 379-394

STOCHASTIC ANALYSIS OF ONE-DIMENSIONAL HETEROGENEOUS SOLIDS WITH LONG-RANGE INTERACTIONS

Mario Di Paola
Dipartimento di Ingegneria Strutturale, Aerospaziale e Geotecnica, Università degli Studi di Palermo, Viale delle Scienze, I-90128, Palermo, Italy
Alba Sofi
Dipartimento Patrimonio Architettonico ed Urbanistico, University Mediterranea di Reggio Calabria, Italy
Massimiliano Zingales
Dipartimento di Ingegneria Strutturale, Aerospaziale e Geotecnica, Università degli Studi di Palermo, Italy

ABSTRACT

Random mass distribution in one-dimensional (1D) elastic solids in the presence of long-range interactions is studied in this paper. Besides the local Cauchy contact forces among adjacent elements, long-range forces depending on the product of interacting masses, as well as on their relative displacements, are considered. In this context, the random fluctuations of the mass distribution involve a stochastic model of the nonlocal interactions, and the random displacement field of the body is provided as the solution of a stochastic integro-differential equation. The presence of the random field of mass distribution is reflected in the random kernel of the solving integro-differential equation with deterministic static and kinematic boundary conditions, since the long-range interactions have no effects at the borders. Numerical applications are reported to highlight the effects of fluctuations of the mass field along the body on the long-range forces and the mechanical response of the 1D elastic body considered.

REFERENCES

  1. Aifantis, E. C. and Frantziskonis, G., On the stochastic interpretation of gradient-dependent constitutive equations. DOI: 10.1016/S0997-7538(01)01201-3

  2. Aifantis, E. C., Gradient effects at macro micro and nanoscales.

  3. Altan, B. S. and Aifantis, E. C., On some aspects in the special theory of gradient elasticity.

  4. Bažant, Z. P. and Belytschko, T. B., Continuum theory for strain-softening.

  5. Bažant, Z. P. and Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress. DOI: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

  6. Cottone, G., Di Paola, M., and Zingales, M., Elastic waves propagation in 1D fractional non-local continuum. DOI: 10.1016/j.physe.2009.09.006

  7. Di Paola, M. and Zingales, M., Long-range cohesive interactions of non-local continuum faced by fractional calculus. DOI: 10.1016/j.ijsolstr.2008.06.004

  8. Di Paola, M., Failla, G., and Zingales, M., Physically-based approach to the mechanics of strong non-local linear elasticity theory. DOI: 10.1007/s10659-009-9211-7

  9. Di Paola, M., Marino, F., and Zingales, M., A generalized model of elastic foundation based on long-range interactions: Integral and fractional model. DOI: 10.1016/j.ijsolstr.2009.03.024

  10. Di Paola, M., Pirrotta, A., and Zingales, M., Mechanically based approach to non-local elasticity: Variational principles. DOI: 10.1016/j.ijsolstr.2009.09.029

  11. Di Paola, M., Failla, G., and Zingales, M., The mechanically based approach to 3D non-local linear elasticity theory: Long-range central interactions. DOI: 10.1016/j.ijsolstr.2010.02.022

  12. Di Paola, M., Pirrotta, A., and Zingales, M., Stochastic dynamics of linear elastic trusses in presence of structural uncertainties (virtual distortion approach). DOI: 10.1016/j.probengmech.2003.11.001

  13. Di Paola, M., Probabilistic analysis of truss structures with uncertain parameters (virtual distortion method approach). DOI: 10.1016/j.probengmech.2003.10.001

  14. Elishakoff, I., Ren, Y. J., and Shinozuka, M., Improved finite element method for stochastic problems. DOI: 10.1016/0960-0779(94)00157-L

  15. Eringen, A. C. and Kim, B. S., Stress concentration at the tip of a crack. DOI: 10.1016/0093-6413(74)90070-6

  16. Eringen, A. C., Nonlocal polar elastic continua. DOI: 10.1016/0020-7225(72)90070-5

  17. Falsone, G. and Ferro, G., A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures.

  18. Falsone, G. and Impollonia, N., A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters. DOI: 10.1016/S0045-7825(02)00437-1

  19. Frantziskonis, G., Stochastic approaches for damage evolution in standard and non-standard continua.

  20. Gutkin, M. Yu., Nanoscopics of dislocations and disclinations in gradient elasticity.

  21. Impollonia, N. and Sofi, A., A response surface approach for the static analysis of stochastic structures with geometrical nonlinearities. DOI: 10.1016/S0045-7825(03)00379-7

  22. Kröner, E., Elasticity theory of materials with long range cohesive forces. DOI: 10.1016/0020-7683(67)90049-2

  23. Mindlin, R. D. and Eshel, N. N., On first strain-gradient theories in linear elasticity. DOI: 10.1016/0020-7683(68)90036-X

  24. Mindlin, R. D., Micro-structure in linear elasticity. DOI: 10.1007/BF00248490

  25. Muscolino, G., Ricciardi, G., and Impollonia, N., Improved dynamic analysis of structures with mechanical uncertainties under deterministic input. DOI: 10.1016/S0266-8920(99)00021-1

  26. Pisano, A. A., Sofi, A., and Fuschi, P., Finite element solutions for nonhomogeneous nonlocal elastic problems. DOI: 10.1016/j.mechrescom.2009.06.003

  27. Polizzotto, C., Gradient elasticity and non standard boundary conditions. DOI: 10.1016/j.ijsolstr.2003.06.001

  28. Polizzotto, C., Nonlocal elasticity and related variational principles. DOI: 10.1016/S0020-7683(01)00039-7

  29. Rogula, D., Introduction to nonlocal theory of material media.

  30. Shinozuka, M. and Deodatis, G., Response variability of stochastic finite element systems. DOI: 10.1061/(ASCE)0733-9399(1988)114:3(499)

  31. Shinozuka, M., Simulation of multivariate and multidimensional random processes. DOI: 10.1121/1.1912338

  32. Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces. DOI: 10.1016/S0022-5096(99)00029-0

  33. Silling, S. A.,Weckner, O., Askari, E., and Bobaru, F., Crack nucleation in a peridynamic solid. DOI: 10.1007/s10704-010-9447-z

  34. Silling, S. A., Zimmermann, M., and Abeyaratne, R., Deformation of a peridynamic bar. DOI: 10.1023/B:ELAS.0000029931.03844.4f

  35. Sobczyk, K. and Kirkner, D. J., Stochastic Modeling of Microstructures.

  36. Sobczyk, K. and Trebicki, J., Fatigue crack growth in random residual stresses. DOI: 10.1016/j.ijfatigue.2004.03.012

  37. Zingales, M., Di Paola, M., and Inzerillo, G., The finite element method for the mechanically based model of non-local continuum. DOI: 10.1002/nme.3118

  38. Zingales, M., Wave propagation in 1D elastic solids in presence of long-range central interactions. DOI: 10.1016/j.jsv.2010.10.027


Articles with similar content:

ESSENTIAL FEATURES OF FINE SCALE BOUNDARY CONDITIONS FOR SECOND GRADIENT MULTISCALE HOMOGENIZATION OF STATISTICAL VOLUME ELEMENTS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
David L. McDowell, Darby Luscher, Curt Bronkhorst
FRACTIONAL DIFFERENTIAL CALCULUS FOR 3D MECHANICALLY BASED NON-LOCAL ELASTICITY
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Massimiliano Zingales, Mario Di Paola
Iterative Algorithms for Computing the Averaged Response of Nonlinear Composites under Stress-Controlled Loadings
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Takahiro Yamada
Multiscale Modeling for Planar Lattice Microstructures with Structural Elements
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Ken Ooue, Isao Saiki, Kenjiro Terada, Akinori Nakajima
VARIATIONALLY CONSISTENT COMPUTATIONAL HOMOGENIZATION OF MICRO-ELECTRO-MECHANICS AT FINITE DEFORMATIONS
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 4
Daniel Vallicotti, Ashish Sridhar, Marc-Andre Keip