图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v9.i4.70
pages 445-458

IDENTIFICATION AND PROBABILISTIC MODELING OF MESOCRACK INITIATIONS IN 304L STAINLESS STEEL

J. Rupil
CEA Saclay, DEN-DANS/DMN/SRMA/LC2M; and LMT Cachan, ENS Cachan/CNRS/UPMC/PRES UniverSud Paris, France
L. Vincent
CEA Saclay, DEN-DANS/DMN/SRMA/LC2M, F-91191 Gif sur Yvette Cedex, France
F. Hild
LMT Cachan, ENS Cachan/CNRS/UPMC/PRES UniverSud Paris, France
Stephane Roux
LMT Cachan, ENS Cachan/CNRS/UPMC/PRES UniverSud Paris; and Laboratoire d'Etudes Aérodynamique (LEA), Université de Poitiers, ENSMA, CNRS, France

ABSTRACT

A probabilistic model is proposed to simulate the growth of fatigue damage in an austenitic stainless steel at a mesoscopic scale. Several fatigue mechanical tests were performed to detect and quantify mesocrack initiations for different loadings by using digital image correlation. The number of initiated mesocracks is experimentally determined. The process is then described by a Poisson point process. The intensity of the process is evaluated by using a multiscale approach based on a probabilistic crack initiation law in a typical grain.

REFERENCES

  1. Argence, D., Endommagements Couplés de Fatigue et de Fluage Sous Chargement Multiaxial.

  2. Bartali, A., Aubin, V., and Degallaix, S., Fatigue damage analysis in a duplex stainless steel. DOI: 10.1111/j.1460-2695.2007.01207.x

  3. Bataille, A. and Magnin, T., Surface damage accumulation in low-cycle fatigue - physical analysis and numerical modeling. DOI: 10.1016/0956-7151(94)90447-2

  4. Besnard, G., Hild, F., and Roux, S., Finite element diplacement fields analysis from digital images: Application to portevin-le chatelier bands. DOI: 10.1007/s11340-006-9824-8

  5. Chauvot, C. and Sester, M., Fatigue crack initiation and crystallographic crack growth in an austenitic stainless steel. DOI: 10.1016/S0927-0256(00)00143-9

  6. Colin, J., Fatemi, A., and Taheri, S., Fatigue behavior of stainless steel 304l including strain hardening, prestraining, and mean stress effects. DOI: 10.1115/1.4000224

  7. Denoual, C., Barbier, G., and Hild, F., A probabilistic approach for fragmentation of brittle materials under dynamic loading. DOI: 10.1016/S1251-8069(97)82333-0

  8. Déprés, C., Modélisation physique des stades précurseurs de l’endommagement en fatigue dans l’acier inoxydable austénitique 316L.

  9. Déprés, C., Robertson, C., and Fivel, M., Low-strain fatigue in 316l steel surface grains: A three dimension discrete dislocation dynamics modelling of the early cycles, Part 2: Persistent slip markings and micro-crack nucleation. DOI: 10.1080/14786430500341250

  10. Desmorat, R., Kane, A., Seyedi, M., and Sermage, J., Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue. DOI: 10.1016/j.euromechsol.2007.01.002

  11. Doudard, C., Calloch, S., Cugy, P., and Hild, F., A probabilistic two-scale model for high-cycle fatigue life predictions. DOI: 10.1111/j.1460-2695.2005.00854.x

  12. Ewing, J. A. and Humfrey, J. C., The fracture of metals under repeated alternations of stress. DOI: 10.1098/rsta.1903.0006

  13. Fedelich, B., A stochastic theory for the problem of multiple surface crack coalescence. DOI: 10.1023/A:1007431802050

  14. Forsyth, P., A two stage process of fatigue crack growth.

  15. Hamam, R., Hild, F., and Roux, S., Stress intensity factor gauging by digital image correlation: Application in cyclic fatigue. DOI: 10.1111/j.1475-1305.2007.00345.x

  16. Hoshide, T. and Socie, D., Crack nucleation and growth modeling in biaxial fatigue. DOI: 10.1016/0013-7944(88)90018-5

  17. Hua, C. and Socie, D., fatigue damage in 1045 steel under constant amplitude biaxial loading. DOI: 10.1111/j.1460-2695.1984.tb00187.x

  18. Le Pecheur, A., Compréhension des Mécanismes et Prévision de l’amor Cage en Fatigue Thermique des Aciers Austénitiques, Prenant en Compte l’état de Surface et le Caractére Multi-Axial du Chargement.

  19. Li, Y., Contribution à l’étude de l’endommagement par Fatigue à L’aide d’un Modéle Polycristallin.

  20. Lindborg, U., A statistical model for the linking of microcracks. DOI: 10.1016/0001-6160(69)90033-9

  21. Ma, B. and Laird, C., Overview of fatigue behavior in copper single crystals, parts 1–5.

  22. Magnin, T., Coudreuse, L., and Lardon, J., A quantitative approach to fatigue damage evolution in fcc and bcc stainless-steels.

  23. Maillot, V., Amor Cage et Propagation de Reseaux de Fissures de Fatigue Thermique Dans un Acier Inoxydable Austénitique de Type X2 CrNi 18-09 (AISI 304L).

  24. Malésys, N., Modélisation Probabiliste de la Formation de Réseaux de Fissures en Fatigue Thermique.

  25. Malésys, N., Vincent, L., and Hild, F., A probabilistic model to predict the formation and propagation of crack networks in thermal fatigue. DOI: 10.1016/j.ijfatigue.2008.03.026

  26. Man, J., Obrtlik, K., Blochwitz, C., and Polak, J., Atomic force microscopy of surface relief in individual grains of fatigued 316l austenitic stainless steel. DOI: 10.1016/S1359-6454(02)00167-2

  27. Miller, K., The thresholds for crack propagation.

  28. Mughrabi, H., Ackermann, F., and Kerz, H., Persistent slip bands in fatigued face-centered and body-centered cubic metals.

  29. Mughrabi, H., Wang, R., Differt, K., and Essman, U., Fatigue crack initiation by cyclic slip irreversibilities in high-cycle fatigue.

  30. Mura, T., A theory of fatigue crack initiation.

  31. Osterstock, S., Vers la Prediction de l’apparition de Reseaux de Fissures en Fatigue Thermique: Influence des Parametres Microstructuraux sur la Dispersion `a l’amor Cage.

  32. Osterstock, S., Robertson, C., Sauzay, M., Degallaix, S., and Aubin, V., Prediction of the scatter of crack initiation under high cycle fatigue. DOI: 10.4028/www.scientific.net/KEM.345-346.363

  33. Paris, P. and Erdogan, F., A critical analysis of crack propagation laws.

  34. Polak, J. and Zezulka, P., Short crack growth and fatigue life in austenitic-ferritic duplex stainless steel. DOI: 10.1111/j.1460-2695.2005.00936.x

  35. Poncelet, M., Barbier, G., Raka, B., Courtin, S., Desmorat, R., Le-Roux, J., and Vincent, L., Biaxial high cycle fatigue of a type 304l stainless steel: Cyclic strains and crack initiation detection by digital image correlation. DOI: 10.1016/j.euromechsol.2010.05.002

  36. Sauzay, M., Evrard, P., Steckmeyer, A., and Ferri´e, E., Physically-based modeling of the cyclic macroscopic behaviour of metals. DOI: 10.1016/j.proeng.2010.03.057

  37. Suh, C., Lee, J., Kang, Y., Ahn, H., and Woo, B., A simulation of the fatigue crack process in type-304 stailess steel at 538-degreesc.

  38. Sutton, M. A., Helm, J. D., and Boone, M. L., Experimental study of crack growth in thin sheet 2024-t3. DOI: 10.1023/A:1011014917851

  39. Vasek, A. and Polak, J., Low-cycle fatigue damage accumulation in armco-iron. DOI: 10.1111/j.1460-2695.1991.tb00653.x

  40. Weiss, J., Endommagement en Viscoplasticité Cyclique Sous Chargement Multiaxial à Haute Température d’un Acier Inoxydable Austénitique.

  41. Weiss, J. and Pineau, A., Fatigue and creep-fatigue damage of austenitic stainless-steels under multiaxial loading. DOI: 10.1007/BF02648599

  42. Zhai, T.,Wilkinson, A. J., and Martin, J.W., A crystallographic mechanism for fatigue crack propagation through grain boundaries. DOI: 10.1016/S1359-6454(00)00214-7


Articles with similar content:

Effects of Shape and Size of Crystal Grains on the Strengths of Polycrystalline Metals
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Kenjiro Terada, Masayoshi Akiyama, Ikumu Watanabe
STATISTICAL CHARACTERISTICS OF BINARY PSEUDORANDOM SIGNALS GENERATED ON THE BASIS OF LORENTZ AND CHUA SYSTEMS
Telecommunications and Radio Engineering, Vol.72, 2013, issue 4
S. S. Loginov, Yu. E. Polskii, V. V. Afanasiev
CONCURRENT ATOMISTIC-CONTINUUM MODEL FOR DEVELOPING SELF-CONSISTENT ELASTIC CONSTITUTIVE MODELING OF CRYSTALLINE SOLIDS WITH CRACKS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Somnath Ghosh, Subhendu Chakraborty, Jiaxi Zhang
AN ATOMISTIC–CONTINUUM MULTISCALE METHOD FOR MODELING THE THERMOMECHANICAL BEHAVIOR OF HETEROGENEOUS NANOSTRUCTURES
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
M. Jahanshahi, N. Jafarian, N. Heidarzadeh, Amir R. Khoei
Crack-Centered Enrichment for Debonding in Two-Phase Composite Applied to Textile Reinforced Concrete
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Jakub Jerabek, Frank Peiffer, Rostislav Chudoba