图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Action-Based Pathway Modeling for Atomic Surface Diffusion

卷 5, 册 3-4, 2007, pp. 273-286
DOI: 10.1615/IntJMultCompEng.v5.i3-4.90
Get accessGet access

摘要

Action-derived molecular dynamics is applied to the simulation of self-diffusion processes on copper substrates. By minimizing a modified action with an energy conservation constraint, the method enables effective computations of minimum energy paths and activation energy barriers for the broad range of multiple timescale problems, including infrequent events and slow-mode systems. Single-adatom diffusions of hopping and exchange moves are first presented to demonstrate its performance. More complex diffusion mechanisms are simulated for hopping and exchange motions across a double-layer step on the Cu(111) surface, which are very difficult to explore by conventional molecular dynamics. Strain effects on diffusion energy barriers are also investigated for a Cu(001)flat surface. Finally, we propose an algorithm to incorporate a multiple length scale scheme into the current method, i.e., the combination of the action-derived molecular dynamics with the nonlocal quasicontinuum method. This hybrid scheme is expected to provide an efficient route to the simultaneous coupling of multiple length and timescales within a single algorithmic framework.

对本文的引用
  1. JUN S., PENDURTI S., LEE I.-H., KIM S. Y., PARK H. S., KIM Y.-H., ACTION-DERIVED AB INITIO MOLECULAR DYNAMICS, International Journal of Applied Mechanics, 01, 03, 2009. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain