图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v2.i4.60
21 pages

Computational Evaluation of Strain Gradient Elasticity Constants

R. H. J. Peerlings
Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
N. A. Fleck
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK

ABSTRACT

Classical effective descriptions of heterogeneous materials fail to capture the influence of the spatial scale of the heterogeneity on the overall response of components. This influence may become important when the scale at which the effective continuum fields vary approaches that of the microstructure of the material and may then give rise to size effects and other deviations from the classical theory. These effects can be successfully captured by continuum theories that include a material length scale, such as strain gradient theories. However, the precise relation between the microstructure, on the one hand, and the length scale and other properties of the effective modeling, on the other, are usually unknown. A rigorous link between these two scales of observation is provided by an extension of the classical asymptotic homogenization theory, which was proposed by Smyshlyaev and Cherednichenko (J. Mech. Phys. Solids 48:1325−1358, 2000) for the scalar problem of antiplane shear. In the present contribution, this method is extended to three-dimensional linear elasticity. It requires the solution of a series of boundary value problems on the periodic cell that characterizes the microstructure. A finite element solution strategy is developed for this purpose. The resulting fields can be used to determine the effective higher-order elasticity constants required in the Toupin-Mindlin strain gradient theory. The method has been applied to a matrix-inclusion composite, showing that higher-order terms become more important as the stiffness contrast between inclusion and matrix increases.


Articles with similar content:

Green's Function and Eshelby's Fields in Couple-Stress Elasticity
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Quanshui Zheng, Z.-H. Zhao
COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Julien Yvonnet, Qi-Chang He, Eric Monteiro
NUMERICAL SIMULATION OF MICRODESTRUCTION AND STRENGTH CHARACTERISTICS OF SPATIALLY REINFORCED COMPOSITES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.4, 2013, issue 4
S. V. Sborshchikov, A. P. Sokolov, Yu. I. Dimitrienko
FRACTIONAL DIFFERENTIAL CALCULUS FOR 3D MECHANICALLY BASED NON-LOCAL ELASTICITY
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Massimiliano Zingales, Mario Di Paola
AVERAGING PROPERTIES FOR PERIODIC HOMOGENIZATION AND LARGE DEFORMATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 3
Laurent Duchene, Mohamed Ben Bettaieb, Abdelwaheb Dogui, Olivier Debordes