图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.2014010181
pages 361-374

TWO-SCALE NUMERICAL HOMOGENIZATION OF THE CONSTITUTIVE PARAMETERS OF REACTIVE POWDER CONCRETE

Arkadiusz Denisiewicz
Institute of Building Engineering, University of Zielona Gora, Licealna 9, 65-417 Zielona Gora, Poland
Mieczyslaw Kuczma
Institute of Structural Engineering, Poznan University of Technology, Pl. Marii Sklodowskiej-Curie 5, 60-965 Poznan, Poland

ABSTRACT

The paper is concerned with the modeling of reactive powder concrete (RPC) by using the method of numerical homogenization. More specifically, a two-scale modeling approach and the finite element method are used. The behavior of a model of RPC on the macro scale is described on the basis of the phenomena occurring in the microstructure of the material. The applied approach makes it possible to take into account the microstructure of material as concerns the different mechanical properties of its constituents. The method does not require any knowledge of the constitutive equations at the macro level, which are determined implicitly by solving a boundary value problem for a representative volume element (RVE) of RPC on the micro level. In order to determine the constitutive equations on the macro scale it is necessary to know the layout of microstructure, the constitutive equations at the micro level, and their parameters. In this contribution the response of each of the concrete constituents (cement matrix, sand, crushed quartz) is assumed to be elastic. The microstructure of RPC concrete is randomly generated. A computer program for the two-scale homogenization of 2D disks has been developed and numerical results for micro and micromacro test problems are presented. Further studies of the considered problem, including also laboratory experiments, are under way.


Articles with similar content:

APPLICATION OF THE MULTISCALE FEM TO THE MODELING OF NONLINEAR COMPOSITES WITH A RANDOM MICROSTRUCTURE
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 3
Klaus Hackl, Sandra Klinge
Estimation of Effective Elastic Properties of Random Structure Composites for Arbitrary Inclusion Shape and Anisotropy of Components Using Finite Element Analysis
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Valeriy A. Buryachenko, G. P. Tandon
AUTOMATED MULTIPLE-SCALE FRACTURE ANALYSIS
International Journal for Computational Civil and Structural Engineering, Vol.1, 2005, issue 1
Mark S. Shephard, Vladimir Belsky, Mark W. Beall, Jacob Fish
Fast Calculation of Elastic Fields in a Homogeneous Medium with Isolated Heterogeneous Inclusions
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Sergey Kanaun
Hypersurface for the Combined Loading Rate and Specimen Size Effects on Material Properties
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
H. Eliot Fang, Yong Gan, Luming Shen, Zhen Chen