图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

A MULTISCALE MODEL OF RATE DEPENDENCE OF NANOCRYSTALLINE THIN FILMS

卷 10, 册 5, 2012, pp. 441-459
DOI: 10.1615/IntJMultCompEng.2012003059
Get accessGet access

摘要

The rate dependence of nanocrystalline thin films is modeled as the competition between two microstructural deformation mechanisms: intra-granular crystal plasticity and inter-granular diffusion-based grain-boundary sliding. The analysis is conducted within the framework of a multiscale finite-element scheme based on the mathematical theory of homogenization. The key parameters entering the description of the grain interior and grain boundary models are calibrated through comparison with high strain rate tensile tests and creep experiments, respectively. The prediction of the viscoplastic response of gold thin films is validated against tensile test measurements obtained over seven decades of strain rate. The relative contribution of the microstructural damage mechanisms is analyzed.

参考文献
  1. Allaire, G., Homogenization and two-scale convergence. DOI: 10.1137/0523084

  2. Arzt, E., Size effects in materials due to microstructural and dimensional constraints: A comparative review. DOI: 10.1016/S1359-6454(98)00231-6

  3. Asaro, R.J. and Needleman, A., Overview no.42 texture development and strain hardening in rate dependent polycrystals. DOI: 10.1016/0001-6160(85)90188-9

  4. Asaro, R.J. and Suresh, S., Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. DOI: 10.1016/j.actamat.2005.03.047

  5. Ashby, M.F., Boundary defects, and atomistic aspects of boundary sliding and diffusional creep. DOI: 10.1016/0039-6028(72)90273-7

  6. Baker, S.P., Vinci, R.P., and Arias, T., Elastic and anelastic behavior of materials in small dimensions. DOI: 10.1557/mrs2002.16

  7. Bensousson, A., Lions, J.L., and Papanicolaou, G., Asymptotic Analysis for Periodic Structures.

  8. Chasiotis, I., Bateson, C., Timpano, K., McCarty, A.S., Barker, N.S., and Stanec, J.R., Strain rate effects on the mechanical behavior of nanocrystalline Au film. DOI: 10.1016/j.tsf.2006.01.033

  9. Chauhan, S. and Bastawros, A.F., Probing thickness-dependent dislocation storage in free standing Cu film using residual electrical resistivity. DOI: 10.1063/1.2961006

  10. Coble, R.L., A model for boundary disffusion controle creep in polycrystalline materials. DOI: 10.1063/1.1702656

  11. Emery, R.D. and Povirk, G.L. , Tensile behavior of free-standing gold films Part II. Fine-grained film. DOI: 10.1016/S1359-6454(03)00007-7

  12. Espinosa, H.D., Prorok, B.C., and Peng, B., Plasticity size effects in free-standing submicron polycrystalline FCC film subjected to pure tension. DOI: 10.1016/j.jmps.2003.07.001

  13. Fish, J., Shek, K., Pandheeradi, M., and Shephard, M., Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. DOI: 10.1016/S0045-7825(97)00030-3

  14. Fu, H.-H., Benson, D.J., and Andre Meyers, M., Computational description of nanocrystalline deformation based on crystal plasticity. DOI: 10.1016/j.actamat.2004.05.036

  15. Guedes, J. and Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. DOI: 10.1016/0045-7825(90)90148-F

  16. Haque, M.A. and Saif, M.T.A., Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. DOI: 10.1073/pnas.0400066101

  17. Herring, C. , Diffusional viscosity of a polycrystalline solid. DOI: 10.1063/1.1699681

  18. Huntington, H.B., The Elastic Constants of Crystals.

  19. Hutchinson, J.W., Bounds and self-consistent estimates for creep of polycrystalline materials. DOI: 10.1098/rspa.1976.0027

  20. Inglis, H.M., Geubelle, P.H., Matous, K., Tan, H., and Huang, Y., Cohesive modeling of dewetting in particulate composites: Micromechanics vs. multiscale finite element analysis. DOI: 10.1016/j.mechmat.2006.08.008

  21. Jerusalem, A., Stainier, L., and Radovitzky, R., A continuum model describing the reverse grain-size dependence of the strength of nanocrystalline metals. DOI: 10.1080/14786430701230252

  22. Jonnalagadda, K., Chasiotis, I., Yagnamurthy, S., Lambros, J., Pulskamp, J., Polcawich, R., and Dubey, M., Experimental investigation of strain rate dependence of nanocrystalline Pt film. DOI: 10.1007/s11340-008-9212-7

  23. Jonnalagadda, K., Karanjgaokar, N., Chasiotis, I., Chee, J., and Peroulis, D., Strain rate sensitivity of nanocrystalline Au film at room temperature. DOI: 10.1016/j.actamat.2010.04.048

  24. Kim, H.S. and Estrin, Y., Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials. DOI: 10.1016/j.actamat.2004.10.028

  25. Kocks, U.F., Relation between polycrystal deformation and single-crystal deformation. DOI: 10.1007/BF02900224

  26. Lapman, S., ASM Handbook.

  27. Lebensohn, R.A., Bringa, E.M., and Caro, A., A viscoplastic micromechanical model for the yield strength of nanocrystalline materials. DOI: 10.1016/j.actamat.2006.07.023

  28. Lene, F. and Leguillon, D., Homogenized constitutive law for a partially cohesive composite material. DOI: 10.1016/0020-7683(82)90082-8

  29. Li, S.F., Wang, G., and Morgan, E., Effective elastic moduli of two dimensional solids with distributed cohesive microcracks. DOI: 10.1016/j.euromechsol.2004.07.002

  30. Long, G.S., Read, D.T., McColskey, J.D., and Crago, K., Microstructural and mechanical characterization of electrodeposited gold film.

  31. Matous, K. and Geubelle, P.H., Multiscale modelling of particle de bonding in reinforced elastomers subjected to finite deformations. DOI: 10.1002/nme.1446

  32. Matous, K., Inglis, H.M., Gu, X., Rypl, D., Jackson, T.L., and Geubelle, P.H., Multiscale modeling of solid propellants: From particle packing to failure. DOI: 10.1016/j.compscitech.2006.06.017

  33. Meyers, M.A., Mishra, A., and Benson, D.J., Mechanical properties of nanocrystalline materials. DOI: 10.4032/9789814241755

  34. Michel, J.C., Moulinec, H., and Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach. DOI: 10.1016/S0045-7825(98)00227-8

  35. Morris, S.J.S. and Jackson,I., Diffusionally assisted grain-boundary sliding and viscoelasticity of polycrystals. DOI: 10.1016/j.jmps.2008.12.006

  36. Peirce, D., Shih, C.F., and Needleman, A., Tangent modulus method for rate dependent solids. DOI: 10.1016/0045-7949(84)90033-6

  37. Raj, R. and Ashby, M., On grain boundary sliding and diffusional creep. DOI: 10.1016/0039-6028(72)90274-9

  38. Rand, O. and Rovenski, V., Analytical Methods in Anisotropic Elasticity: with Symbolic Computational Tools. DOI: bbm:978-0-8176-4420-8/1

  39. Ranganathan, S.I. and Ostoja-Starzewski, M., Scale-dependent homogenization of inelastic random polycrystals. DOI: 10.1115/1.2912999

  40. Sakai, S., Tanimoto, H., Kita, E., and Mizubayashi, H., Characteristic creep behavior of nanocrystalline metals found for high-density gold. DOI: 10.1103/PhysRevB.66.214106

  41. Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory. DOI: 10.1007/3-540-10000-8_5

  42. Sanchez-Palencia, E. and Zaoui, A., Homogenization Techniques for Composite Media. DOI: 10.1007/3-540-17616-0

  43. Swygenhoven, H.V., Footprints of plastic deformation in nanocrystalline metals. DOI: 10.1016/j.msea.2006.10.204

  44. Terada, K. and Kikuchi, N., A class of general algorithms for multiscale analyses of heterogeneous media. DOI: 10.1016/S0045-7825(01)00179-7

  45. Thompson, C.V., Structure evolution during processing of polycrystalline film. DOI: 10.1146/annurev.matsci.30.1.159

  46. Wang, L. and Prorok, B.C., Characterization of the strain rate dependent behavior of nanocrystalline gold film. DOI: 10.1557/JMR.2008.0032

  47. Wei, Y.J. and Anand, L., Grain-boundary sliding and separation in polycrystalline metals: Application to nanocrystalline FCC metals. DOI: 10.1016/j.jmps.2004.04.006

  48. Wei, Y. and Gao, H., An elastic-viscoplastic model of deformation in nanocrystalline metals based on coupled mechanisms in grain boundaries and grain interiors. DOI: 10.1016/j.msea.2007.05.054

  49. Wei, Y., Su, C., and Anand, L., A computational study of the mechanical behavior of nanocrystalline FCC metals. DOI: 10.1016/j.actamat.2006.03.007

  50. Yagi, N., Rikukawa, A., Mizubayashi, H., and Tanimoto, H., Experimental tests of the elementary mechanism responsible forc reep deformation in nanocrystalline gold. DOI: 10.1103/PhysRevB.74.144105

  51. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H., Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. DOI: 10.1038/nmat1035

  52. Yan, X., Brown, W.L., Li, Y., Papapolymerou, J., Palego, C., Hwang, J.C.M., and Vinci, R.P., Anelastic stress relaxation in gold film and its impact on restoring forces in MEMS devices. DOI: 10.1109/JMEMS.2009.2016280

对本文的引用
  1. Karanjgaokar Nikhil, Stump Fernando, Geubelle Philippe, Chasiotis Ioannis, A thermally activated model for room temperature creep in nanocrystalline Au films at intermediate stresses, Scripta Materialia, 68, 8, 2013. Crossref

  2. Chasiotis Ioannis, Experiments and Models for the Time Dependent Mechanics of Nanoscale Polymeric Structures and Nanocrystalline Metal Films, in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 3, 2011. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain