图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.2012002929
pages 461-486

ESSENTIAL FEATURES OF FINE SCALE BOUNDARY CONDITIONS FOR SECOND GRADIENT MULTISCALE HOMOGENIZATION OF STATISTICAL VOLUME ELEMENTS

Darby Luscher
Los Alamos National Laboratory
David L. McDowell
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Curt Bronkhorst
Los Alamos National Laboratory

ABSTRACT

A second gradient continuum description developed, for example, by Germain, Toupin and Mindlin, and Eringen, gives rise to strain gradient plasticity, and is becoming a common coarse scale basis for multiscale homogenization of material response that respects the non-local nature of heterogeneous fine scale material response. Such homogenization approaches are developed to build either concurrent or hierarchical multiscale computational models for the second gradient response at the coarse scale that represent salient aspects of material response at the fine scale. Typically, the homogenization procedure consists of solving an initial boundary value problem for a statistical volume element of heterogeneous material at the fine scale and computing coarse scale stresses and strains using various volume averaging procedures. By enforcing a kinematically consistent description of the deformation field at each scale and asserting invariance of linear momentum with respect to scale of observation of a fixed set of mass particles, critical features of the boundary conditions and computation of homogenized stresses are revealed. In particular, an internal constraint on the higher-order fluctuation field is required to ensure orthogonality between that part of the fine scale deformation attributed to the second gradient and the part associated with higher-order fluctuations. Additionally, the body forces resulting from such internal constraints must be included in the computation of coarse scale stresses to respect scale invariance of linear momentum at each scale. Numerical implementation of fine scale fluctuation constraints employs linear constraint equations; the computation of coarse scale stresses is facilitated through a multiscale statement of principle of virtual velocities. Example fine scale simulations and associated coarse scale homogenization are presented to illustrate aspects of the boundary conditions.

REFERENCES

  1. Abaqus, Version 6.7-1 User's Manual.

  2. Amanatidou, E. and Aravas, N., Mixed finite element formulations of strain-gradient elasticity problems. DOI: 10.1016/S0045-7825(01)00353-X

  3. Barnes, J.G.P., An algorithm for solving non-linear equations based on the secant method. DOI: 10.1093/comjnl/8.1.66

  4. Ghosh, S., Lee, K., and Raghavan, P., A multi-level computational model for multi-scale damage analysis in composite and porous materials. DOI: 10.1016/S0020-7683(00)00167-0

  5. Ghosh, S., Bai, J., and Raghavan, P., Concurrent multi-level model for damage evolution in microstructurally debonding composites. DOI: 10.1016/j.mechmat.2006.05.004

  6. Hazanov, S. and Amieur, M., On overall properties of elastic heterogeneous bodies smaller than the representative volume. DOI: 10.1016/0020-7225(94)00129-8

  7. Hill, R., On constitutive macro-variables for heterogeneous solids at finite strain. DOI: 10.1098/rspa.1972.0001

  8. Janicke, R., Diebels, S., Sehlhorst, H.-G., and Duster, A., Two-scale modelling of micromorphic continua. DOI: 10.1007/s00161-009-0114-4

  9. Kaczmarczyk, L., Pearce, C.J., and Bicanic, N., Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. DOI: 10.1002/nme.2188

  10. Kouznetsova, V., Geers, M.G.D., and Brekelmans, W.A.M., Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. DOI: 10.1002/nme.541

  11. Kouznetsova, V.G., Geers, M.G.D., and Brekelmans, W.A.M., Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy. DOI: 10.1016/j.cma.2003.12.073

  12. Larsson, R. and Diebels, S., A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. DOI: 10.1002/nme.1854

  13. Luscher, D.J. and McDowell, D.L., An extended multiscale principle of virtual velocities approach for evolving microstructure. DOI: 10.1016/j.proeng.2009.06.028

  14. Luscher, D.J., McDowell, D.L., and Bronkhorst, C.A.,, A second gradient theoretical framework for hierarchical multiscale modeling of materials. DOI: 10.1016/j.ijplas.2010.05.006

  15. Mesarovic, S.D. and Padbidri, J., Minimal kinematic boundary conditions for simulations of disordered microstructures. DOI: 10.1080/14786430412331313321

  16. Raghavan, P. and Ghosh, S., Concurrent multi-scale analysis of elastic composites by a multi-level computational model. DOI: 10.1016/j.cma.2003.10.007

  17. Terada, K., Hori, M., Kyoya, T., and Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches. DOI: 10.1016/S0020-7683(98)00341-2

  18. van der Sluis, O., Schreurs, P.J.G., Brekelmans, W.A.M., and Meijer, H.E.H., Overall behaviour of heterogeneous elastoviscoplastic materials: Effect of microstructural modelling. DOI: 10.1016/S0167-6636(00)00019-3

  19. Vernerey, F., Liu, W.K., and Moran,B., Multi-scale micromorphic theory for hierarchical materials. DOI: 10.1016/j.jmps.2007.04.008

  20. Vernerey, F.J., Liu, W.K., Moran, B., and Olson, G., A micromorphic model for the multiple scale failure of heterogeneous materials. DOI: 10.1016/j.jmps.2007.09.008

  21. Vernerey, F., Liu, W.K., Moran, B., and Olson, G., Multi-length scale micromorphic process zone model. DOI: 10.1007/s00466-009-0382-7


Articles with similar content:

Multiscale Total Lagrangian Formulation for Modeling Dislocation-Induced Plastic Deformation in Polycrystalline Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
Jiun-Shyan Chen, Nasr M. Ghoniem, Xinwei Zhang, Shafigh Mehraeen
EFFECTIVE ELASTIC MODULUS OF PERISTATIC BAR WITH PERIODICALLY DISTRIBUTED DAMAGE
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 1
Valeriy A. Buryachenko
Wavelet-Based Spatial Scaling of Coupled Reaction-Diffusion Fields
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 4
Srdjan Simunovic, Sudib Kumar Mishra, Krishna Muralidharan, George Frantziskonis, Sreekanth Pannala, Pierre A. Deymier
A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
Hongwu Zhang, Zhaoqian Xie
Multiscale Dislocation Dynamics Plasticity
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
S. M. A. Khan, H. M. Zbib, G. Karami, M. Shehadeh