图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v8.i5.80
pages 535-547

Evaluating the Glass Transition Temperature of Polystyrene by an Experimentally Validated Molecular Dynamics Model

Anand Srivastava
Computational Mechanics Research Laboratory, Department of Mechanical Engineering, The Ohio StateUniversity, Columbus, OH 43210, USA
Somnath Ghosh
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218

ABSTRACT

This paper develops a molecular dynamics model for studying physical properties of bulk polystyrene at different temperatures. This includes calculation of thermal expansion coefficient, mean-squared displacement, and free volume fraction as means of evaluating glass transition temperature for polystyrene. The force field for polystyrene has been borrowed from literature (TRaPPE potential), and a regular bulk system with periodic boundary conditions has been setup. The model is aimed at the calculation of free volume fraction in polystyrene, and the novelty lies in validation of positronium lifetime spectroscopy data. Both the mean void size and free volume fraction are obtained with a focus on the evolution of free volume and its distribution with changing temperatures.

REFERENCES

  1. Allen, M. P. and Tilsesley, D. J., Computer Simulation of Liquids.

  2. Auhl, R., Everaers, R., Grest, G. S., Kremer, K., and Plimpton, S. J., Equilibration of long chain polymer melts in computer simulations. DOI: 10.1063/1.1628670

  3. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W., Di- Nola, A., and Haak, J. R., Molecular dynamics with coupling to an external bath. DOI: 10.1063/1.448118

  4. Brown, D., Clarke, H. R., Okuda, M., and Yamazaki, T., The preparation of polymer melt samples for computer simulation studies. DOI: 10.1063/1.467111

  5. Buchholz, J., Paul, R., Varnik, F., and Binder, K., Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study. DOI: 10.1063/1.1508366

  6. Cohen, M. H. and Turnbull, D. J., Molecular transport in liquids and glasses. DOI: 10.1063/1.1730566

  7. Faulon, J. L., Stochastic generator of chemical structure. 4. Building polymeric systems with specified properties. DOI: 10.1002/jcc.1030

  8. Flory, P. J., Statistical Mechanics of Chain Molecule.

  9. Fox, T. G. and Flory, P. J., Further studies on the melt viscosity of polyisobutylene. DOI: 10.1021/j150485a010

  10. Han, J., Gee, R. H., and Boyd, R. H., Glass transition temperatures of polymers from molecular dynamics simulations. DOI: 10.1021/ma00104a036

  11. Hans, J. and Boyd, R. H., Molecular packing and small-penetrant diffusion in polystyrene: a molecular dynamics simulation study. DOI: 10.1016/0032-3861(96)87295-8

  12. Harmandaris, V. A., Dirk, R., Nico, F., and Kremer, K., Comparison between coarse-graining models for polymer systems: Two mapping schemes for polystyrene. DOI: 10.1002/macp.200700245

  13. Jean, Y. C., Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers. DOI: 10.1016/0026-265X(90)90027-3

  14. Kotelyanskii, M. and Theodorou, D. N., Simulation Methods for Polymers.

  15. Lui, J., Deng, Q., and Jean, Y. C., Free-volume distributions of polystyrene probed by positron annihilation: comparison with free-volume theories. DOI: 10.1021/ma00078a006

  16. Lyuyin, A. V. and Michels, M. A. J., Molecular dynamics simulation of bulk atactic polystyrene in the vicinity of T<sub>g</sub. DOI: 10.1021/ma011318u

  17. Lyuyin, A. V., Balabev, N. K., and Michels, M. A. J., Dynamic heterogeneity in miscible polymer blends with stiffness disparity:  computer simulations using the bond fluctuation model. DOI: 10.1021/ma034682x

  18. McKechnie, J. I., Brown, D., and Clarke, J. H. R., Methods of generating amorphous polymer samples for use in molecular dynamics simulations. DOI: 10.1021/ma00031a031

  19. Mondello, M., Yang, H., Furyaa, H., and Roe, R., Molecular dynamics simulation of atactic polystyrene 1. Comparison with X-ray scattering data. DOI: 10.1021/ma00091a018

  20. Osswald, T. and Menges, G., Mat. Sci of Polymers for Eng.

  21. Raffi, T. H. and Mansoori, G. A., Encyclopedia of Nanoscience and Nanotechnology.

  22. Rapold, R. F., Suter, U. W., and Theodorou, D. N., Static atomistic modelling of the structure and ring dynamics of bulk amorphous polystyrene. DOI: 10.1002/mats.1994.040030103

  23. Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. DOI: 10.1016/0021-9991(77)90098-5

  24. Smith,W. and Forester, T. J., A general-purpose parallel molecular dynamics simulation package. DOI: 10.1016/s0263-7855(96)00043-4

  25. Theodorou, D. N. and Suter, U. W., Detailed molecular structure of a vinyl polymer glass. DOI: 10.1021/ma00149a018

  26. Todorov, I. and Smith, W., The CCP5 national UK code for molecular dynamics simulation. DOI: 10.1098/rsta.2004.1419

  27. Toxvaerd, S., Molecular dynamics calculation of the equation of state of alkanes. DOI: 10.1063/1.458709

  28. Tsige, M. and Taylor, P. L., Simulation study of the glass transition temperature in poly (methyl methacrylate). DOI: 10.1103/PhysRevE.65.021805

  29. Wick, C. D., Martin, M. G., and Siepmann, J. I., Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes. DOI: 10.1021/jp001044x

  30. William, M. L., Landel, R. F., and Ferry, J. D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. DOI: 10.1021/ja01619a008

  31. Workum, K. V. and Pablo, J. J., computer simulation of the mechanical properties of amorphous polymer nanostructures. DOI: 10.1021/nl034458l


Articles with similar content:

Use of the Microscopic Properties of a Substance for a Thermodynamic Analysis of Thermal Processes
Heat Transfer Research, Vol.39, 2008, issue 8
A. G. Vikulov
VIRTUAL METALLIC FOAMS. APPLICATION FOR DYNAMIC CRUSHING ANALYSIS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 5
Marcin Nowak, Zdzisław Nowak, Ryszard B. Pecherski
MOLECULAR DYNAMICS SIMULATION OF NANOSCALE FRICTION FOR NATURAL RUBBER AND PROBE
International Heat Transfer Conference 16, Vol.24, 2018, issue
Yan He, Li Liu, Zeng Liu, Lianxiang Ma, Yuanzheng Tang, Guoqing Liu
Multiscale Transformation Field Analysis of Progressive Damage in Fibrous Laminates
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Ritesh Khire, Prabhat Hajela, Yehia Bahei-El-Din
The Stability and Mechanical Properties of Boron Nanotubes Explored through Density Functional Calculations
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 2
Ruiqin Zhang, Xing Hu, Lijun Pan, Xiaobao Yang