图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v2.i3.50
23 pages

Multilevel Parallel Programming for Multiscale Modeling of Composite Materials

Paul M. Eder
Department of Mechanical Engineering, Ohio State University, Columbus, Ohio 43210
James E. Giuliani
Science and Technology Support Group, The Ohio Supercomputer Center 1224 Kinnear Rd., Columbus, Ohio, 43210
Somnath Ghosh
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218

ABSTRACT

This paper presents work aimed at implementing an efficient multilevel parallel model for an adaptive multiscale finite element model. The FEM model combines a traditional displacement based finite element model with a microstructural Voronoi cell finite element method (VCFEM) for multiscale modeling of heterogeneous microstructures with nonuniform microstructural heterogeneities. Three levels of hierarchy are used in the model, including (a) level-0 of pure macroscopic analysis; (b) level-1 of macro-micro coupling, used for signaling the switch over from macroscopic analyses to pure microscopic analyses; and (c) level-2 regions of pure microscopic modeling. A distributed/shared memory (DSM) cluster system is used for code development and execution, where multiprocessor nodes offer shared memory on the node and distributed memory between the nodes. The approach uses multiple parallel models to efficiently distribute the level-1 and level-2 workloads across multiple workstations based on computational requirements. The Message Passing Interface (MPI) library is used for distributed memory decomposition between nodes, and multithreading using the OpenMP (OMP) library is used for shared memory decomposition on each node. An efficient iterative multigrid solver is also integrated. The details of these implementations are discussed and numerical results, which demonstrate the ability of the parallel model to solve problems in a fast and efficient manner, are provided.


Articles with similar content:

Multiscale Model for Damage Analysis in Fiber-Reinforced Composites with Interfacial Debonding
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Somnath Ghosh, Prasanna Raghavan
AN ADAPTIVE DOMAIN DECOMPOSITION PRECONDITIONER FOR CRACK PROPAGATION PROBLEMS MODELED BY XFEM
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 6
Haim Waisman, Luc Berger-Vergiat
MODELING HETEROGENEITY IN NETWORKS USING POLYNOMIAL CHAOS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 3
Ioannis G. Kevrekidis, Carlo R. Laing, Constantinos I. Siettos, Karthikeyan Rajendran, Andreas C. Tsoumanis
REDUCING FRACTURE PREDICTION UNCERTAINTY BASED ON TIME-LAPSE SEISMIC (4D) AND DETERMINISTIC INVERSION ALGORITHM
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 2
Liming Zhang, Yi Wang, Qin Luo, Chenyu Cui, Kai Zhang, Jun Yao, Zhixue Sun
A COSSERAT BASED MULTI-SCALE MODEL FOR MASONRY STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Maria Laura De Bellis, Daniela Addessi