图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Interfacial Microstructures in Martensitic Transitions: From Optical Observations to Mathematical Modeling

卷 7, 册 5, 2009, pp. 445-456
DOI: 10.1615/IntJMultCompEng.v7.i5.60
Get accessGet access

摘要

We present a construction of a mathematical model of an interfacial microstructure (i.e., microstructure forming at the phase interface between austenite and martensite) in a single crystal of Cu-Al-Ni shape memory alloy. In the first part of the article, the experiment is briefly outlined and the compatibility of the experimentally observed microstructures is analyzed, showing that the observed X-interfaces cannot be compatible without the presence of elastic strains. Then, the elastic strains in the microstructure are evaluated by finite element method, whereby the elastic coefficients of finely microstructured regions are obtained by homogenization. The significant influence of the choice of the geometry on the numerical results is shown and discussed.

参考文献
  1. Otsuka, K., and Wayman, C., Shape Memory Materials.

  2. Bhattacharya, K., Microstructure of Martensite.

  3. Ball, J. M., and James, R. D., Fine phase mixtures as minimizers of energy. DOI: 10.1007/BF00281246

  4. Ball, J. M., and James, R. D., Proposed experimental tests of theory of fine microstructure and the two-well problem. DOI: 10.1098/rsta.1992.0013

  5. Dolzmann, G., Variational Methods for Crystalline Microstructure – Analysis and Computation.

  6. Bhattacharya, K., Li, B., and Luskin, M., The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase trans formation. DOI: 10.1007/s002050050170

  7. Novák, V., Š ittner, P., Ignacová , S., and Č ernoch, T., Transformation behavior of prism shaped shape memory alloy single crystals. DOI: 10.1016/j.msea.2006.02.192

  8. Seiner, H., Sedlák, P., and Landa, M., Shape recovery mechanism observed in single crystals of Cu-Al-Ni shape memory alloy. DOI: 10.1080/01411590801891616

  9. Basinski, Z. S., and Christian, J. W., Experiments on the martensitic trasformation in single crystals of indium-thallium alloys. DOI: 10.1016/0001-6160(54)90104-2

  10. Ruddock, G., A Microstructure of martensite which is not a minimiser of energy: The Xinterface. DOI: 10.1007/BF01845216

  11. Balandraud, X., and Zanzotto, G., Stressed microstructures in thermally induced M9R-M18R martensites. DOI: 10.1016/j.jmps.2006.03.009

  12. Turteltaub, S., and Suiker, A. S. J., A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations. DOI: 10.1016/j.ijsolstr.2005.06.065

  13. Gao, X., Huang, H., and Brinson, L. C., A multivariant micromechanical model for SMAs, part 1. Crystallographic issues for single crystal model. DOI: 10.1016/S0749-6419(00)00013-9

  14. Patoor, E., Lagoudas, D. C., Entchev, P. B., Brinson, L. C., and Gao, X., Shape memory alloys, part I: General properties and modeling of single crystals. DOI: 10.1016/j.mechmat.2005.05.027

  15. Lagoudas, D. C., Entchev, P. B., Popov, P., Patoor, E., Brinson, L. C., and Gao, X., Shape memory alloys, part II: Modeling of polycrystals. DOI: 10.1016/j.mechmat.2005.08.003

  16. Popov, P., and Lagoudas, D. C., A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. DOI: 10.1016/j.ijplas.2007.03.011

  17. Hane, K. F., Microstructures in Thermoelastic Martensites.

  18. Chu, C-H., and James, R. D., Analysis of microstructures in Cu-14.0%Al-3.9%Ni by energy minimization. DOI: 10.1051/jp4:1995817

  19. Sedl ák, P., Seiner, H., Landa, M., Nov ák, V., áittner, P., and Manosa, L., Elastic constants of BCC austenite and 2H orthorombic martensite in CuAlNi shape memory alloy. DOI: 10.1016/j.actamat.2005.04.013

  20. Brinson, L. C., and Lammering, R., Finite element analysis of the behavior of shape memory alloys and their applications.

  21. Auricchio, F., and Petrini, L., A threedimensional model describing stresstemperature induced solid phase transformations: Solution algorithm and boundary value problem. DOI: 10.1002/nme.1086

  22. Stupkiewicz, S., Maciewski, G., and Petryk, H., Low-energy morphology of the interface layer between austenite and twinned martensite. DOI: 10.1016/j.actamat.2007.07.034

  23. Musgrave, M. J. P., Crystal Acoustics.

  24. Nayfeh, A. H., Wave Propagation in Layered Anisotropic Media.

  25. Seiner, H., Dynamic and transient phenomena in single crystals of shape memory alloys.

  26. Landa, M., Sedlák, P., Seiner, H., Heller, L., Bicanov á, L., Šittner, P., and Novák, V., Modal resonant ultrasound spectroscopy for ferroelastics. DOI: 10.1007/s00339-008-5047-4

对本文的引用
  1. Seiner H., Landa M., Non-classical austenite-martensite interfaces observed in single crystals of Cu–Al–Ni, Phase Transitions, 82, 11, 2009. Crossref

  2. Delpueyo D., Balandraud X., Grédiac M., Applying infrared thermography to analyse martensitic microstructures in a Cu–Al–Be shape-memory alloy subjected to a cyclic loading, Materials Science and Engineering: A, 528, 28, 2011. Crossref

  3. Stupkiewicz Stanisław, Górzyńska-Lengiewicz Anna, Almost compatible X-microstructures in CuAlNi shape memory alloy, Continuum Mechanics and Thermodynamics, 24, 2, 2012. Crossref

  4. Seiner Hanuš, Straka Ladislav, Heczko Oleg, A microstructural model of motion of macro-twin interfaces in Ni–Mn–Ga 10M martensite, Journal of the Mechanics and Physics of Solids, 64, 2014. Crossref

  5. Seiner Hanuš, Mobile Interfacial Microstructures in Single Crystals of Cu–Al–Ni Shape Memory Alloy, Shape Memory and Superelasticity, 1, 2, 2015. Crossref

  6. Faran Eilon, Seiner Hanus, Landa Michal, Shilo Doron, The effects of microstructure on crackling noise during martensitic transformation in Cu-Al-Ni, Applied Physics Letters, 107, 17, 2015. Crossref

  7. Faran Eilon, Shilo Doron, Microstructural Effects During Crackling Noise Phenomena, in Avalanches in Functional Materials and Geophysics, 2017. Crossref

  8. Heczko O., Vronka M., Veřtát P., Rameš M., Onderková K., Kopecký V., Krátká P., Ge Y., Mechanical Stabilization of Martensite in Cu–Ni–Al Single Crystal and Unconventional Way to Detect It, Shape Memory and Superelasticity, 4, 1, 2018. Crossref

  9. Cissé Cheikh, Asle Zaeem Mohsen, An Asymmetric Elasto-Plastic Phase-Field Model for Shape Memory Effect, Pseudoelasticity and Thermomechanical Training in Polycrystalline Shape Memory Alloys, Acta Materialia, 201, 2020. Crossref

  10. Tsou Nien-Ti, Chen Chih-Hsuan, Chen Chuin-Shan, Wu Shyi-Kaan, Classification and analysis of trigonal martensite laminate twins in shape memory alloys, Acta Materialia, 89, 2015. Crossref

  11. Seiner Hanuš, Glatz Ondřej, Landa Michal, A finite element analysis of the morphology of the twinned-to-detwinned interface observed in microstructure of the Cu–Al–Ni shape memory alloy, International Journal of Solids and Structures, 48, 13, 2011. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain