图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v4.i4.10
pages 411-428

Applications of s-FEM to the Problems of Composite Materials with Initial Strain-Like Terms

Satoyuki Tanaka
Department of Nano-structure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
Hiroshi Okada
Department of Nano-structure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
Yoshimi Watanabe
Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
Teppei Wakatsuki
Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

ABSTRACT

In this paper, the applications of s-FEM that involve initial strain-like terms are presented. When s-FEM is applied to the analyses of composite materials, the overall structure or the region of unit cell is modeled by a global finite element model and each reinforcing particle/fiber and its immediate vicinity are modeled by a local finite element model. Many local finite element models are placed in the analysis region and they are allowed to overlap each other. When the particles/fibers are the same in their shapes, the same local finite element models can be placed repeatedly. Therefore, generating an analysis model that has many particles/fibers is a simple task. Modifying their distributions is even more trivial. The s-FEM formulation is extended so that it can incorporate with the initial strain-like terms first. The formulations for the analyses of residual stress and of elasto-viscoplastic problems are presented. Numerical procedures to form stiffness matrices and how to choose material and strain history data when finite elements overlap each other are then discussed. We solved the problems of wavy shape memory alloy fiber/plaster composite material and of particulate composite material whose matrix material experiences an elasto-viscoplastic deformation.


Articles with similar content:

Consistent Loading in Structural Reduction Procedures for Beam Models
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
D. Gadasi, Slava Krylov, Isaac Harari
ITERATIVE GLOBAL-LOCAL APPROACH TO CONSIDER THE EFFECTS OF LOCAL ELASTO-PLASTIC DEFORMATIONS IN THE ANALYSIS OF THIN-WALLED MEMBERS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Ali Saleh, R. Emre Erkmen
CONCURRENT COUPLING OF BOND-BASED PERIDYNAMICS AND THE NAVIER EQUATION OF CLASSICAL ELASTICITY BY BLENDING
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 2
Youn Doh Ha, Samir Beneddine, Pablo Seleson
SHEAR STRENGTH COMPUTATION OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH COMPOSITE MATERIALS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.3, 2012, issue 3
Paolo Foraboschi
Three-Dimensional Finite Element Modeling for Concrete Materials Using Digital Image and Embedded Discontinuous Element
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Takahiro Yamada, Gakuji Nagai