图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2012004599
pages 37-56

SIMULATION ON MOTION OF A GROUP OF CHARGED DROPLETS IN AN ELECTROSTATIC SPRAY PROCESS

Jun Zhang
Cleaning Combustion and Energy Utilization Research Center of Fujian Province, School of Mechanical Engineering, Jimei University, China
Hongzhou He
Cleaning Combustion and Energy Utilization Research Center of Fujian Province, School of Mechanical Engineering, Jimei University, China

ABSTRACT

Considering the droplet size and charge distributions, breakup length of the charged jet, electrical interaction between droplets, and especially, the variation of droplet number with time, the two-dimensional motion is simulated for a group of charged droplets continuously generated in an electrostatic spray process. The droplet spatial distributions obtained from simulation and from experiments are basically consistent. The simulation results show that the larger droplets move mainly in the central area of spray, while the smaller ones have a trend moving toward the edge area of spray. The results also show that the effect of the electrical interaction force between droplets on droplet motion is significant, and it cannot be ignored for cases with a fairly long distance from the capillary exit. In the area near the capillary exit, the electrical interaction force is very large and its direction also randomly changes during the droplet migration process. This leads to a significant fluctuation in the droplet velocity curve. With the increase of distance from the capillary exit, the electrical interaction force becomes small and relatively regular. This causes the droplet velocity and trajectory curves to gradually become smooth. In comparison, the curves of velocity and trajectory for large droplets are smoother than those for small droplets. In addition, droplet concentration, axial and radial velocity distributions, as well as the forces on the droplet are also obtained, and some local behaviors of droplet motion are revealed.


Articles with similar content:

LARGE EDDY SIMULATION OF FLUID INJECTION UNDER TRANSCRITICAL CONDITIONS: EFFECTS OF PSEUDOBOILING
Heat Transfer Research, Vol.48, 2017, issue 17
Maozhao Xie, Wu Wei, Ming Jia
CHARACTERISTICS OF AN ACOUSTICALLY MODULATED SPRAY ISSUED FROM CIRCULAR AND ELLIPTICAL ORIFICE NOZZLES
Atomization and Sprays, Vol.16, 2006, issue 3
Sumanta Acharya, T. Messina
EXPERIMENTAL INVESTIGATION OF DYNAMICS AND ATOMIZATION OF A LIQUID FILM FLOWING OVER A SPINNING DISK
Atomization and Sprays, Vol.23, 2013, issue 7
Martin Freystein, Tatiana Gambaryan-Roisman, Peter Stephan, T. Borsdorf
INVESTIGATION ON SUPERCRITICAL FLUIDS HEAT TRANSFER DETERIORATION AND ITS MITIGATIONS
International Heat Transfer Conference 16, Vol.20, 2018, issue
Eze Chika, Hui Cheng, Jiyun Zhao
Molecular Dynamics Investigation on the Wetting Process of Liquid Droplet on a Solid Surface
International Heat Transfer Conference 15, Vol.29, 2014, issue
Donatas Surblys, Koji Kuroda, Tadashi Nakajima, Hideo Fujimura, Yasutaka Yamaguchi, Masaru Kagawa, Shogo Nishida, Eisuke Arakaki