图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2012003630
pages 1-21

EFFECT OF NOZZLE HOLE GEOMETRY ON NON-EVAPORATING DIESEL SPRAY CHARACTERISTICS AT HIGH-PRESSURE INJECTION

Jangsik Kong
Department of Mechanical Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejon, 305-701, Republic of Korea
Choongsik Bae
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Gusong-dong, Yuseong-gu, Daejon, 305-701, Republic of Korea

ABSTRACT

Non-evaporating diesel sprays from a common-rail injection system were characterized to investigate the effect of nozzle hole geometry. Two valve covered orifice (VCO) injectors with cylindrical and tapered nozzle holes were used. The injection rate was measured using an injection rate meter via the Bosch tube method. The spray tip penetration was analyzed from macroscopic spray images in a constant volume chamber using a high-resolution charge-coupled device camera and a spark light. Spray characteristics near the nozzle hole exit were observed using a microscopic visualization technique. The velocity and size of the droplets were measured downstream using a phase Doppler anemometer system. At the initial stage, the slope of the injection velocity from the tapered nozzle hole was larger than that from the cylindrical nozzle hole at the same injection pressure. The maximum injection velocity from the tapered nozzle hole was also higher. Until the micro-spray cone angle reached a maximum value, the spray tip penetration of the two nozzles increased with the change of injection rate. Subsequently, the spray tip penetration increased linearly with time. At the initial stage, the length of the liquid column injected from the tapered nozzle hole was about twice as long as that from the cylindrical nozzle hole. During the injection period, the oscillation in the micro-spray angle of the tapered nozzle hole was smaller than that of the cylindrical nozzle hole. The velocity and size of a droplet downstream with the tapered nozzle hole were slower and smaller than the velocity and size of the cylindrical nozzle hole.


Articles with similar content:

DISINTEGRATION OF LIQUID JETS FROM A COAXIAL DUAL NOZZLE, PART I: OBSERVATION OF BREAKUP PHENOMENA
Atomization and Sprays, Vol.7, 1997, issue 5
Soo-Young No, Masataka Arai, Kenji Amagai
THE CHARACTERISTICS OF POSTIMPINGEMENT DIESEL SPRAY, PART II: EMPIRICAL EQUATION OF PENETRATION
Atomization and Sprays, Vol.12, 2002, issue 4
Masataka Arai, Kyungnam Ko
INVESTIGATIONS OF COMMON-RAIL FUEL INJECTION TECHNIQUE IN DI-DIESEL-ENGINES
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Franz Mayinger, B. Ofner, S. Eisen
TOMOGRAPHIC VISUALIZATION OF THE DENSE CORE REGION IN TRANSIENT DIESEL SPRAYS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Gregory J. Smallwood, David R. Snelling, Omer L. Gulder
SPRAY CHARACTERISTICS OF A PRESSURE-SWIRL FUEL INJECTOR SUBJECTED TO A CROSSFLOW AND A COFLOW
Atomization and Sprays, Vol.21, 2011, issue 8
Barry Kiel, Ryan G. Batchelor, Amy Lynch, Mark Reeder, James Gord, Joseph Miller