图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.v19.i8.20
pages 727-739

AN EULERIAN-LAGRANGIAN SPRAY AND ATOMIZATION MODEL WITH IMPROVED TURBULENCE MODELING

Wei Ning
Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin, 53706
Rolf D. Reitz
Engine Research Center, University of Wisconsin-Madison, Rm 1018A, 1500 Engineering Drive, Madison, Wisconsin 53706, USA
Ramachandra Diwakar
General Motors Research & Development and Strategic Planning, 30500 Mound Road, Warren, Michigan 48090
Andreas M. Lippert
General Motors Research & Development and Strategic Planning, 30500 Mound Road, Warren, Michigan 48090

ABSTRACT

An Eulerian-Lagrangian spray and atomization (ELSA) model for high-pressure diesel sprays has been developed in this study. The new model is based on the assumption that the high-pressure diesel spray and atomization process can be described by considering a single effective phase of liquid-gas mixture to represent the turbulent mixing of a liquid jet with ambient gases. A switch from the Eulerian approach to the Lagrangian approach is made beyond the dense spray region near the nozzle. It has long been recognized that the standard kε turbulence model underpredicts the penetration and overpredicts the spreading rate of high-speed free jets. To correct for these effects, several previously proposed techniques are used to correct for vortex stretching and compressibility effects in high-speed free jets in this study. The turbulence model modifications were applied to high-speed gas and liquid jets, and incorporated into the ELSA model to simulate the high-speed diesel spray and atomization process.


Articles with similar content:

END OF INJECTION PROCESS IN A SINGLE-HOLE DIESEL INJECTOR
Atomization and Sprays, Vol.28, 2018, issue 1
V. Garaniya, P. A. Brandner, Mohammadmahdi Ghiji, P. Hield, Laurie Goldsworthy
AN EXPERIMENTAL AND NUMERICAL STUDY OF THE ATOMIZATION OF A PLANAR LIQUID SHEET
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Charles J. Call, Cesar Dopazo, Antonio Lozano
MULTIDIMENSIONAL SIMULATION OF CAVITATING FLOWS IN DIESEL INJECTORS BY A HOMOGENEOUS MIXTURE MODELING APPROACH
Atomization and Sprays, Vol.18, 2008, issue 2
Olivier Simonin, Chawki Habchi, Nicolas Dumont
SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS
Atomization and Sprays, Vol.10, 2000, issue 3-5
Hiroyuki Hiroyasu
EFFECTS OF CAVITATION AND INTERNAL FLOW ON ATOMIZATION OF A LIQUID JET
Atomization and Sprays, Vol.8, 1998, issue 2
Keiya Nishida, Hiroyuki Hiroyasu, N. Tamaki, M. Shimizu