图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2012004415
pages 1009-1031

STEADY AND TRANSIENT DROPLET DISPERSION IN AN AIR-ASSIST INTERNALLY MIXING CONE ATOMIZER

Amir Abbas Aliabadi
Department of Mechanical Engineering, University of British Columbia, 3321−2260 West Mall, Vancouver, British Columbia, V6T1Z4, Canada
Kelly W. J. Lim
Department of Mechanical Engineering, University of British Columbia, 3321−2260 West Mall, Vancouver, British Columbia, V6T1Z4, Canada
Steven N. Rogak
Department of Mechanical Engineering, University of British Columbia, 3321−2260 West Mall, Vancouver, British Columbia, V6T1Z4, Canada
Sheldon I. Green
Department of Mechanical Engineering, University of British Columbia, 3321−2260 West Mall, Vancouver, British Columbia, V6T1Z4, Canada

ABSTRACT

Droplet dispersion for steady and transient sprays produced by an air-assist internally mixing cone atomizer is studied using high-speed laser imaging, shadowgraphy, and particle tracking velocimetry (PTV). For this spray, large droplets form close to the periphery while small droplets form close to the centerline. Radial dispersion of droplets is a function of droplet relaxation time and fluctuating flow characteristic times so that small droplets disperse more effectively in the radial direction than large droplets due to turbulent diffusion. For the transient spray, the overall axial and radial penetration of the spray is self-preserving and similar to penetration of starting continuous phase jets. Axial dispersion of droplets is a function of droplet relaxation time and the mean flow characteristic time. The leading edge of the spray exhibits higher turbulence than the trailing edge, which is characterized by very large eddies and smaller Reynolds numbers. The dispersion behavior at far-field away from the breakup region is expected to be similar for many dilute air-assist, internally mixing round sprays.


Articles with similar content:

STRUCTURE OF REACTING AND NONREACTING, NONSWIRLING, AIR-ASSISTED SPRAYS, PART I: GAS-PHASE PROPERTIES
Atomization and Sprays, Vol.3, 1993, issue 4
M. Adachi, G. Scott Samuelsen, Vincent G. McDonell
A COMPARISON OF SPRAY CHARACTERISTICS BETWEEN AN AIR-ASSISTED FUEL INJECTOR AND A HIGH-PRESSURE SWIRL INJECTOR FOR GASOLINE DIRECT-INJECTION ENGINE APPLICATION
Atomization and Sprays, Vol.12, 2002, issue 1-3
C. Jang
VIEWS ON THE STRUCTURE OF TRANSIENT DIESEL SPRAYS
Atomization and Sprays, Vol.10, 2000, issue 3-5
Gregory J. Smallwood, Omer L. Gulder
IMPROVED ATOMIZATION USING VARIABLE ASPECT RATIO AIR SWIRLERS
Atomization and Sprays, Vol.29, 2019, issue 7
Srikrishna Sahu, Thirumalachari Sundararajan, Shraddha Sharma
MACROSCOPIC CHARACTERIZATION OF FLASH-BOILING MULTIHOLE SPRAYS USING PLANAR LASER-INDUCED EXCIPLEX FLUORESCENCE. PART II: CROSS-SECTIONAL SPRAY STRUCTURE
Atomization and Sprays, Vol.23, 2013, issue 3
David J. Cleary, Ming Zhang, Yuyin Zhang, Min Xu, Gaomimg Zhang