图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2017021033
pages 791-805

MICROSCOPIC ANALYSIS OF TRANSVERSAL AND AZIMUTHAL SURFACE DISTURBANCES OF HIGH-PRESSURE SPRAYS

Valeri Kirsch
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056 Aachen, Germany
Manuel Armin Reddemann
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056 Aachen, Germany
Johannes Palmer
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056 Aachen, Germany
Reinhold Kneer
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52062 Aachen, Germany

ABSTRACT

A microscopic system, consisting of a transmitted light microscope and constant-pressure flow vessel, is specifically designed to enable highly resolved high-pressure primary breakup investigations at engine-like densities. At first measurements diesel and two alternative fuels are injected with a standard diesel injector at different ambient pressures. Reynolds and Ohnesorge number are varied over a wide range and several individual mechanisms are identified: an asymmetric outlet flow, the formation of sheets, ligaments, and droplets, and finally the growth of azimuthal and transversal surface disturbances. Wavelength magnitudes of transversal disturbances are in good agreement with existing analytical theories of boundary layer instabilities. Azimuthal disturbances are associated with nozzle internal cavitation. For the given high Weber number azimuthal disturbances are mainly responsible for the overall shape and subsequent breakup of the jet core.


Articles with similar content:

ON THE SHEET BREAKUP OF DIRECT-INJECTION GASOLINE PRESSURE-SWIRL ATOMIZER SPRAYS
Atomization and Sprays, Vol.17, 2007, issue 6
P. W. Loustalan, Martin H. Davy
AN INVESTIGATION ON THE BREAKUP OF UNDERWATER BUOYANT OIL JETS: COMPUTATIONAL SIMULATIONS AND EXPERIMENTS
Atomization and Sprays, Vol.23, 2013, issue 11
Leandre R. Berard, Stephen R. Codyer, Mehdi Raessi, Michael T. Bauer, Peter Friedman
EFFECT OF THE LIQUID INJECTION ANGLE ON THE ATOMIZATION OF LIQUID JETS IN SUBSONIC CROSSFLOWS
Atomization and Sprays, Vol.24, 2014, issue 1
H. Almeida, J. M. M. Sousa, Mário Costa
GASOLINE SPRAYS INJECTED AT DIFFERENT BACK PRESSURES: CALCULATIONS USING TWO ATOMIZATION MODELS
Atomization and Sprays, Vol.17, 2007, issue 3
Salah S. Ibrahim, Graham Wigley, N. B. H. Abdelkarim, Assaad Masri
EXPERIMENTAL INVESTIGATION OF JET BREAKUP AT LOW WEBER NUMBER
Atomization and Sprays, Vol.27, 2017, issue 9
Raj M. Manglik, S. Rajendran, Milind A. Jog