图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2013007679
pages 1001-1048

DIRECT NUMERICAL AND LARGE-EDDY SIMULATION OF PRIMARY ATOMIZATION IN COMPLEX GEOMETRIES

Olivier Desjardins
Sibley School of Mechanical and Aerospace Engineering Cornell University 250 Upson Hall, Ithaca, NY 14853 USA
Jeremy McCaslin
Sibley School of Mechanical and Aerospace Engineering Cornell University 245 Upson Hall, Ithaca, NY 14853 USA
Mark Owkes
Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, 59717-3800, USA
Peter Brady
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853-7501, USA

ABSTRACT

A detailed understanding of the driving mechanisms behind primary atomization is crucial to the optimization of sprays for efficient combustion in modern propulsion systems. Many challenges are associated with simulating realistic turbulent atomization, such as the multiplicity of length and time scales of the turbulent flow field and gas-liquid interface, discontinuous fluid properties and pressure at the phase interface, high density ratios that degrade numerical robustness, and complex shapes of spray injectors. These challenges have hindered progress in computational modeling of atomizing two-phase flows, and as a result a complete characterization of all physical processes involved in turbulent atomization has remained elusive. This paper presents a suite of computational tools that have been developed in an effort to simulate primary atomization from first principles. The incompressible Navier-Stokes equations are handled in the context of a high-order accurate, discretely conservative, finite difference solver shown to be ideally suited for direct numerical and large-eddy simulations of turbulence. A conservative level set method is used for interface capture, improved through the use of local re-initialization enabled by an efficient fast marching method. A high-density ratio correction algorithm is employed that leads to tighter coupling between mass and momentum transport. Finally, the use of immersed boundaries allows for modeling of complex geometries without requiring body-fitted meshes, eliminating time spent generating complex grids. The framework outlined herein is shown to have the ability to capture important instabilities for atomizing flows, such as Rayleigh-Plateau and Kelvin-Helmholtz instabilities. Simulations of air-assisted breakup of both planar and coaxial liquid layers are shown to agree well with theoretical and experimental results. This strategy is employed to simulate the breakup of a turbulent liquid jet under diesel conditions, the atomization of a liquid sheet issued from a pressure swirl atomizer, and finally a complete dual-orifice atomizer, leading to qualitative insights on the atomization process. Detailed parallel scaling results are also provided.


Articles with similar content:

EULERIAN MOMENT METHODS FOR AUTOMOTIVE SPRAYS
Atomization and Sprays, Vol.25, 2015, issue 3
F. Laurent, Q.-H. Tran, O. Emre, M. Massot, A. Velghe, Stephane Jay, S. de Chaisemartin, D. Kah, R. O. Fox
ANALYSIS METHODS FOR DIRECT NUMERICAL SIMULATIONS OF PRIMARY BREAKUP OF SHEAR-THINNING LIQUID JETS
Atomization and Sprays, Vol.27, 2017, issue 4
Moritz Ertl, Bernhard Weigand
EMBEDDED DNS CONCEPT FOR SIMULATING THE PRIMARY BREAKUP OF AN AIRBLAST ATOMIZER
Atomization and Sprays, Vol.26, 2016, issue 3
Johannes Janicka, Amsini Sadiki, Benjamin Sauer
ON SIMULATING PRIMARY ATOMIZATION USING THE REFINED LEVEL SET GRID METHOD
Atomization and Sprays, Vol.21, 2011, issue 4
Marcus Herrmann
CHARACTERIZATION OF TRAJECTORY, BREAK POINT, AND BREAK POINT DYNAMICS OF A PLAIN LIQUID JET IN A CROSSFLOW
Atomization and Sprays, Vol.21, 2011, issue 3
U. M. Mondragon, Q. Wang, C. T. Brown, Vincent McDonell