图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.262 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.v13.i23.20
18 pages

ELECTROHYDRODYNAMICS OF CHARGE INJECTION ATOMIZATION: REGIMES AND FUNDAMENTAL LIMITS

John S. Shrimpton
Energy Technology Research Group, School of Engineering Sciences, University of Southampton, United Kingdom, SO171BJ

ABSTRACT

The dynamics and controlling mechanisms of a charge injection electrostatic atomization method for insulating liquids have been investigated using a sharp electrode as a current source, which is placed inside the atomizer and held at a high electrical potential. The method is applicable to highly insulating liquids such as hydrocarbon oils and oil-based solutions, and potential uses of this technology include combustion systems and high-quality spray coating/deposition applications. Subcritical and supercritical flow regimes of atomizer operation are delineated by different types of electrical breakdown. The subcritical flow regime is limited by an insulation failure of the liquid hydrocarbon itself and occurs inside the atomizer. This regime, although of interest to understand the fundamental nature of the electrohydromechanics, does not produce finely atomized sprays. Atomization performance in the supercritical flow regime is characterized by the maximum spray specific charge being limited by a partial discharge in the gas outside the nozzle, around the liquid jet as it emerges from the nozzle. In this case, finely atomized sprays are possible, and with no electrical limitation on the upper flow rate limit. The maximum spray specific charge achievable in the supercritical regime has been found to increase at larger nozzle exit velocities and also for smaller orifice diameters. These two factors, combined with the increased aerodynamic shear acting on the charged liquid jet as it emerges from the orifice at higher velocities, enhances the destabilization of the charged liquid jet to produce finely atomized and well-dispersed sprays of insulating liquids.


Articles with similar content:

ELECTRICAL AND SPRAY CHARACTERISTICS OF A MULTIORIFICE CHARGE-INJECTION ATOMIZER FOR ELECTRICALLY INSULATING LIQUIDS
Atomization and Sprays, Vol.20, 2010, issue 4
Agisilaos Kourmatzis, John S. Shrimpton, Jeff Allen
ELECTRICAL PERFORMANCE OF A CHARGE-INJECTION ATOMIZER USING VISCOUS ORGANIC OILS
Atomization and Sprays, Vol.19, 2009, issue 6
E. L. Ergene, Farzad Mashayek, John S. Shrimpton, G. Al-Ahmad
ATOMIZATION, COMBUSTION, AND CONTROL OF CHARGED HYDROCARBON SPRAYS
Atomization and Sprays, Vol.11, 2001, issue 4
John S. Shrimpton
DESIGN ISSUES CONCERNING CHARGE INJECTION ATOMIZERS
Atomization and Sprays, Vol.14, 2004, issue 2
John S. Shrimpton
EFFECT OF GEOMETRIC VARIATIONS ON THE SPRAY DYNAMICS OF AN ANNULAR FUEL SHEET IN A HYBRID ATOMIZER
Atomization and Sprays, Vol.24, 2014, issue 8
Souvick Chatterjee, Achintya Mukhopadhyay, Mithun Das, Swarnendu Sen