图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2012004171
pages 893-905

DROPLET SIZE AND VELOCITY MEASUREMENTS AT THE OUTLET OF A HOLLOW CONE SPRAY NOZZLE

Arnaud Foissac
IRSN, DSU/SERAC/LEMAC, BP 68, F-91192 Gif-sur-Yvette Cedex, France
Jeanne Malet
IRSN; UJV Rez, Hlavni 130, PSC 250 68, Czech Republic
Maria Rosaria Vetrano
KU Leuven
Jean-Marie Buchlin
von Karman Institute for Fluid Dynamics, Rhode-St-Genese, Belgium
Stephane Mimouni
Electricite de France, R&D Division, MFEE, 6 Quai Watier, 78400 Chatou, France
Francois Feuillebois
LIMSI-CNRS, BP 133, F-91403 Orsay Cedex, France
Olivier Simonin
Institut de Mecanique des Fluides de Toulouse, IMFT, Universite de Toulouse, CNRS - Toulouse, FRANCE

ABSTRACT

During the course of a severe accident in a nuclear pressurized water reactor (PWR), hydrogen may be produced by reactor core oxidation and distributed into the containment. Spray systems are used in order to limit overpressure, enhance the gas mixing, avoid hydrogen accumulation, and wash out fission products. In order to simulate these phenomena with computational fluid dynamics codes, it is first necessary to know the droplet size and velocity distributions close to the outlet nozzle. Furthermore, since most of the phenomena relative to droplets (condensation, gas entrainment, and collisions) are of particular importance in the region just below the nozzle, accurate input data are needed for real-scale PWR calculations. The objective is, therefore, to determine experimentally these input data under atmospheric conditions. Experimental measurements were performed on a single spray nozzle, which is routinely set up in many PWRs. This nozzle is generally used with water at a relative pressure supply of 3.5 bar, producing a mass flow rate of approximately 1 kg/s. At a distance of 20 cm, in which under ambient conditions atomization is just achieved, it is found that the geometric mean diameter varies from 280 to 340 μm, the Sauter mean diameter varies from 430 to 520 μm, and the mean axial velocity varies from 14 to 20 m/s. The radial velocity is around 7 m/s, whereas the orthoradial velocity is almost equal to zero at this distance of the nozzle. Gas velocity measurements around the spray are also performed.


Articles with similar content:

TWA800 FUEL TANK COMBUSTION AND EXPLOSION MIXTURES
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Floyd A. Wyczalek
EXPERIMENTAL CHARACTERIZATION OF VVER-440 REACTOR CONTAINMENT TYPE SPRAY NOZZLE
Atomization and Sprays, Vol.26, 2016, issue 3
Jeanne Malet, Z. Parduba
AN EXPERIMENTAL STUDY ON EFFERVESCENT ATOMIZATION OF BIO-OIL FUELS
Atomization and Sprays, Vol.22, 2012, issue 8
R. V. Ravikrishna, Madan Mohan Avulapati
MEASUREMENTS AND PREDICTIONS OF A LIQUID SPRAY FROM AN AIR-ASSIST NOZZLE
Atomization and Sprays, Vol.2, 1992, issue 4
Daniel L. Bulzan, Yeshayahou Levy, Suresh Aggarwal, Susheel Chitre
DIESEL SPRAY VISUALIZATION AND SHOCKWAVES
Atomization and Sprays, Vol.20, 2010, issue 3
Harri Hillamo, Martti Larmi, Ossi Kaario, Ville Vuorinen, Teemu Sarjovaara