图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2012003294
pages 883-892

SPRAY CHARACTERISTICS OF DIESEL FUEL CONTAINING DISSOLVED CO2

M. Karaeen
Ben-Gurion University of the Negev, Beer-Sheva, Israel
Eran Sher
Professor Emeritus, Technion - Israel Institute of Technology

ABSTRACT

The effect of adding CO2 to diesel fuel has been studied by several groups that used tailor-made injection systems to achieve notable low Sauter mean diameters (SMDs). In the present study, we use a real commercial fuel injection system and study the effect of the amount of dissolved CO2 on the resulting spray characteristics. In this case, when the mixture enters the injector and flows downstream through the variable cross-section passage toward the discharge orifice, partial nucleation of the dissolved gas is expected to occur at different locations along the duct, which transforms the mixture into tiny bubbles that grow fast downstream. When the mixture is driven out through the discharge orifice, these bubbles undergo a rapid flashing process that results in an intensive disintegration of the liquid bulk into small droplets. In the present study, we present an experimental study of the atomization process of diesel fuel containing dissolved CO2 that occurs in steady flow conditions. An extensive study was performed to map the effect of the CO2 content on the spray SMD and droplet distribution at different locations downstream the discharge orifice. It is concluded that the atomization of diesel fuel containing dissolved CO2, is significantly promoted by the flash-boiling phenomenon, which results in low SMD sprays, low D0.1 droplets, a faster breakup mechanism, and a more uniform droplet size distribution.


Articles with similar content:

EFFERVESCENT ATOMIZATION OF GASOLINE CONTAINING DISSOLVED CO2
Atomization and Sprays, Vol.14, 2004, issue 4
A. Rashkovan, V. Kholmer, Eran Sher
EXPERIMENTAL STUDY OF THE EFFECTS OF CARBON DIOXIDE CONCENTRATION IN DIESEL FUEL ON SPRAY CHARACTERISTICS
Atomization and Sprays, Vol.18, 2008, issue 5
Zhen Huang, Qiao Xinqi, Jin Xiao
EFFECT OF BUBBLE GENERATION CHARACTERISTICS ON EFFERVESCENT ATOMIZATION AT LOW GAS-LIQUID RATIO OPERATION
Atomization and Sprays, Vol.20, 2010, issue 3
David S. Nobes, Sina Ghaemi, Payam Rahimi
AN EXPERIMENTAL STUDY ON SPRAY TRANSIENT CHARACTERISTICS IN FUEL CONTAINING CO2
Atomization and Sprays, Vol.19, 2009, issue 4
Zhen Huang, Qiao Xinqi, Ma Junjun, Jin Xiao
EFFECT OF THE LIQUID INJECTION ANGLE ON THE ATOMIZATION OF LIQUID JETS IN SUBSONIC CROSSFLOWS
Atomization and Sprays, Vol.24, 2014, issue 1
H. Almeida, J. M. M. Sousa, Mário Costa